脚本专栏 
首页 > 脚本专栏 > 浏览文章

解决pytorch 交叉熵损失输出为负数的问题

(编辑:jimmy 日期: 2025/1/14 浏览:3 次 )

网络训练中,loss曲线非常奇怪

解决pytorch 交叉熵损失输出为负数的问题

交叉熵怎么会有负数。

经过排查,交叉熵不是有个负对数吗,当网络输出的概率是0-1时,正数。可当网络输出大于1的数,就有可能变成负数。

所以加上一行就行了

out1 = F.softmax(out1, dim=1)

补充知识:在pytorch框架下,训练model过程中,loss=nan问题时该怎么解决?

当我在UCF-101数据集训练alexnet时,epoch设为100,跑到三十多个epoch时,出现了loss=nan问题,当时是一脸懵逼,在查阅资料后,我通过减小学习率解决了问题,现总结一下出现这个问题的可能原因及解决方法:

1. 减小整体学习率。学习率比较大的时候,参数可能over shoot了,结果就是找不到极小值点;减小学习率可以让参数朝着极值点前进;

2. 改变网络宽度。有可能是网络后面的层参数更新异常,增加后面层的宽度试试;

3. 改变层的学习率。每个层都可以设置学习率,可以尝试减小后面层的学习率试试;

4. 数据归一化(减均值,除方差,或者加入normalization,例如BN、L2 norm等);

5. 加入gradient clipping;

6 输入数据含有脏数据,即NaN,一般当使用实际业务的真实数据时,容易出现脏数据。

以上这篇解决pytorch 交叉熵损失输出为负数的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:pytorch加载自己的图像数据集实例
下一篇:keras实现VGG16 CIFAR10数据集方式
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?