脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python模拟伯努利试验和二项分布代码实例

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

1、模拟 27 次投掷硬币的伯努利试验

代码:

from scipy import stats
import numpy as np
p = 0.5
# 生成冻结分布函数
bernoulliDist = stats.bernoulli(p) 

# 模拟 27 次伯努利实验
trails = bernoulliDist.rvs(27) 

# 查看结果
trails

Python模拟伯努利试验和二项分布代码实例

2、模拟二项分布

代码

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
 
Ps = [0.5, 0.6, 0.7]
Ns = [20, 20, 20]
colors = ['blue', 'green', 'red']
 
# 模拟试验绘制图形
for p,n, c in zip(Ps, Ns, colors):
  binomDist = stats.binom(n, p)
  P_k = binomDist.pmf(np.arange(n + 1))
   
  label='p={},n={}'.format(p, n)
  plt.plot(P_k, '--',marker='o', label=label, ms=5)
   
plt.xlabel('X')
plt.ylabel('P(X)')
plt.legend()
 
plt.show()

结果

Python模拟伯努利试验和二项分布代码实例

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:pytorch查看通道数 维数 尺寸大小方式
下一篇:Pytorch 使用 nii数据做输入数据的操作
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。