脚本专栏 
首页 > 脚本专栏 > 浏览文章

python查看矩阵的行列号以及维数方式

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

print(X.shape):查看矩阵的行列号

print(len(X)):查看矩阵的行数

print(X.ndim):查看矩阵的维数

1 查看矩阵的行列号

python查看矩阵的行列号以及维数方式

2 查看矩阵的行数

python查看矩阵的行列号以及维数方式

3 查看矩阵的维数

python查看矩阵的行列号以及维数方式

补充知识:Python之numpy模块的添加及矩阵乘法的维数问题

在Python中,numpy 模块是需要自己安装的,在安装编程软件时,默认安装了pip,因此我们可以用pip命令来安装

numpy模块。

首先打开电脑的“cmd.exe”,如下图所示:

python查看矩阵的行列号以及维数方式

在这里输入“pip install numpy”,然后按回车键来安装numpy模块,安装过程如下图所示:

python查看矩阵的行列号以及维数方式

我这里是第二次安装,如果是第一次安装,会显示安装过程的进度条,在图中可以看出 “Successfully installed numpy-1.14.5”,即成功的安装了版本为1.14.5的numpy模块。

接下来就可以使用numpy模块进行编程了。

这里来说一下使用矩阵乘法的问题:在numpy模块中矩阵的乘法用dot()函数,但是要注意维数,还有就是要细心。

下面的代码在执行的过程中就报错了:

import numpy as np

def nonlin(x,deriv=False):
 if (deriv==True):
  return x*(1-x)
 return 1/(1+np.exp(-x))

#input dataset
x=np.array([[0.05, 0.07, 1.26, 51,128983, 37.180962, 149.0759784, 4.368080458, 1.0132,  24.4777],
   [0.54, 0.18, 0.34, 30.83226759, 39.7490114, 12.70335148, 5.792655734, 4.66,  1.57],
   [0.47, 0.95, 2.01, 38.01532298, 3.080286601, 89.59062789, 5.349154432, 1.05,  0.461],
   [0.81, 1.06, 1.3, 77.882162, 59.17737344, 124.9541366, 5.259286248, 0.2105,  1.706]])
#output dataset
y=np.array([[15, 26, 33, 64]]).T
np.random.seed(1)
syn0=2*np.random.random((9,1))-1

for iter in range(10000):
 l0=x
 l1=nonlin(np.dot(l0,syn0))
 l1_error=y-l1
 l1_delta=l1_error*nonlin(l1,True)
 syn0+=np.dot(l0.T,l1_delta)
print ("Outout after training:")
print (l1)

报错如图所示:

python查看矩阵的行列号以及维数方式

这里的第三十行就是上述代码中的“l1=nonlin(np.dot(l0,syn0))”,这里提示(4,)与(9,1)不对齐,然后打印一下矩阵l0和syn0

的维数,即将命令“print(l0.shape)”和“print(syn0.shape)”放在“l1=nonlin(np.dot(l0,syn0))”的前一行,如下图所示:

python查看矩阵的行列号以及维数方式

发现矩阵l0和syn0的维数分别为(4,)与(9,1),若矩阵l0为(4,9),矩阵乘法才能计算。这里的矩阵l0就是输入,即为x。

经过查找发现输入的第一行数据中,有一个数据错将小数点输成逗号所致。将上述代码的输入数据:

#input dataset
x=np.array([[0.05, 0.07, 1.26, 51,128983, 37.180962, 149.0759784, 4.368080458, 1.0132,  24.4777],
   [0.54, 0.18, 0.34, 30.83226759, 39.7490114, 12.70335148, 5.792655734, 4.66,  1.57],
   [0.47, 0.95, 2.01, 38.01532298, 3.080286601, 89.59062789, 5.349154432, 1.05,  0.461],
   [0.81, 1.06, 1.3, 77.882162, 59.17737344, 124.9541366, 5.259286248, 0.2105,  1.706]])

改为:

#input dataset
x=np.array([[0.05, 0.07, 1.26, 51.128983, 37.180962, 149.0759784, 4.368080458, 1.0132,  24.4777],
   [0.54, 0.18, 0.34, 30.83226759, 39.7490114, 12.70335148, 5.792655734, 4.66,  1.57],
   [0.47, 0.95, 2.01, 38.01532298, 3.080286601, 89.59062789, 5.349154432, 1.05,  0.461],
   [0.81, 1.06, 1.3, 77.882162, 59.17737344, 124.9541366, 5.259286248, 0.2105,  1.706]])

然后代码执行成功。

以上这篇python查看矩阵的行列号以及维数方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Tensorflow tf.tile()的用法实例分析
下一篇:python代码实现将列表中重复元素之间的内容全部滤除
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。