脚本专栏 
首页 > 脚本专栏 > 浏览文章

python如何解析复杂sql,实现数据库和表的提取的实例剖析

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

需求:

公司的数据分析师,提交一个sql, 一般都三四百行。由于数据安全的需要,不能开放所有的数据库和数据表给数据分析师查询,所以需要解析sql中的数据库和表,与权限管理系统中记录的数据库和表权限信息比对,实现非法查询的拦截。

解决办法:

在解决这个问题前,现在github找了一下轮子,发现python下面除了sql parse没什么好的解析数据库和表的轮轮。到是在java里面找到presto-parser解析的比较准。于是自己结合sql parse源码写了个类,供大家参考,测试了一下,检测还是准的。

测试sql

select
b.product_name "产品",
count(a.order_id) "订单量",
b.selling_price_max "销售价",
b.gross_profit_rate_max/100 "毛利率",
case when b.business_type =1 then '自营消化' when b.business_type =2 then '服务商消化' end "消化模式"
from(select 'CRM签单' label,date(d.update_ymd) close_ymd,c.product_name,c.product_id,
  a.order_id,cast(a.recipient_amount as double) amt,d.cost
  from mysql4.dataview_fenxiao.fx_order a
  left join mysql4.dataview_fenxiao.fx_order_task b on a.order_id = b.order_id
  left join mysql7.dataview_trade.ddc_product_info c on cast(c.product_id as varchar) = a.product_ids and c.snapshot_version = 'SELLING'
  inner join (select t1.par_order_id,max(t1.update_ymd) update_ymd,
        sum(case when t4.product2_type = 1 and t5.shop_id is not null then t5.price else t1.order_hosted_price end) cost
        from hive.bdc_dwd.dw_mk_order t1
        left join hive.bdc_dwd.dw_mk_order_status t2 on t1.order_id = t2.order_id and t2.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
        left join mysql7.dataview_trade.mk_order_merchant t3 on t1.order_id = t3.order_id
        left join mysql7.dataview_trade.ddc_product_info t4 on t4.product_id = t3.MERCHANT_ID and t4.snapshot_version = 'SELLING'
        left join mysql4.dataview_scrm.sc_tprc_product_info t5 on t5.product_id = t4.product_id and t5.shop_id = t1.seller_id
        where t1.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
        and t2.valid_state in (100,200) ------有效订单
        and t1.order_mode = 10  --------产品消耗订单
        and t2.complete_state = 1 -----订单已经完成
        group by t1.par_order_id
  ) d on d.par_order_id = b.task_order_id
  where c.product_type = 0 and date(from_unixtime(a.last_recipient_time)) > date('2016-01-01') and a.payee_type <> 1 -----------已收款
  UNION ALL
  select '企业管家消耗' label,date(c.update_ymd) close_ymd,b.product_name,b.product_id,
  a.task_id,(case when a.yb_price = 0 and b.product2_type = 1 then b.selling_price_min else a.yb_price end) amt,
  (case when a.yb_price = 0 and b.product2_type = 2 then 0 when b.product2_type = 1 and e.shop_id is not null then e.price else c.order_hosted_price end) cost
  from mysql8.dataview_tprc.tprc_task a
  left join mysql7.dataview_trade.ddc_product_info b on a.product_id = b.product_id and b.snapshot_version = 'SELLING'
  inner join hive.bdc_dwd.dw_mk_order c on a.order_id = c.order_id and c.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
  left join hive.bdc_dwd.dw_mk_order_status d on d.order_id = c.order_id and d.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
  left join mysql4.dataview_scrm.sc_tprc_product_info e on e.product_id = b.product_id and e.shop_id = c.seller_id
  where d.valid_state in (100,200) and d.complete_state = 1 and c.order_mode = 10
  union ALL
  select '交易管理系统' label,date(t6.close_ymd) close_ymd,t4.product_name,t4.product_id,
  t1.order_id,(t1.order_hosted_price-t1.order_refund_price) amt,
  (case when t1.order_mode <> 11 then t7.user_amount when t1.order_mode = 11 and t4.product2_type = 1 and t5.shop_id is not null then t5.price else t8.cost end) cost
  from hive.bdc_dwd.dw_mk_order t1
  left join hive.bdc_dwd.dw_mk_order_business t2 on t1.order_id = t2.order_id and t2.acct_day=substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
  left join mysql7.dataview_trade.mk_order_merchant t3 on t1.order_id = t3.order_id
  left join mysql7.dataview_trade.ddc_product_info t4 on t4.product_id = t3.MERCHANT_ID and t4.snapshot_version = 'SELLING'
  left join mysql4.dataview_scrm.sc_tprc_product_info t5 on t5.product_id = t4.product_id and t5.shop_id = t1.seller_id
  left join hive.bdc_dwd.dw_fact_task_ss_daily t6 on t6.task_id = t2.task_id and t6.acct_time=date_format(date_add('day',-1,current_date),'%Y-%m-%d')
  left join (select a.task_id,sum(a.user_amount) user_amount
        from hive.bdc_dwd.dw_fn_deal_asyn_order a
        where a.is_new=1 and a.service='Trade_Payment' and a.state=1 and a.acct_day=substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
        group by a.task_id)t7 on t7.task_id = t2.task_id     
  left join (select t1.par_order_id,sum(t1.order_hosted_price - t1.order_refund_price) cost
        from hive.bdc_dwd.dw_mk_order t1
        where t1.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2) and t1.order_type = 1 and t1.order_stype = 4 and t1.order_mode = 12
        group by t1.par_order_id) t8 on t1.order_id = t8.par_order_id
  where t1.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
  and t1.order_type = 1 and t1.order_stype in (4,5) and t1.order_mode <> 12 and t4.product_id is not null and t1.order_hosted_price > 0 and t6.is_deal = 1 and t6.close_ymd >= '2018-12-31'
)a
left join mysql7.dataview_trade.ddc_product_info b on a.product_id = b.product_id and b.snapshot_version = 'SELLING'
where b.product2_type = 1 -------标品
and close_ymd between DATE_ADD('day',-7,CURRENT_DATE) and DATE_ADD('day',-1,CURRENT_DATE)
GROUP BY b.product_name,
b.selling_price_max,
b.gross_profit_rate_max/100,
b.actrul_supply_num,
case when b.business_type =1 then '自营消化' when b.business_type =2 then '服务商消化' end
order by count(a.order_id) desc
limit 10

可以看到该sql比较杂,也没有格式化,不太好提取数据库和表。所以第一步需要对sql进行格式化

直接上代码:

# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import sqlparse
from sqlparse.sql import Identifier, IdentifierList
from sqlparse.tokens import Keyword, Name

RESULT_OPERATIONS = {'UNION', 'INTERSECT', 'EXCEPT', 'SELECT'}
ON_KEYWORD = 'ON'
PRECEDES_TABLE_NAME = {'FROM', 'JOIN', 'DESC', 'DESCRIBE', 'WITH'}


class BaseExtractor(object):
  def __init__(self, sql_statement):
    self.sql = sqlparse.format(sql_statement, reindent=True, keyword_case='upper')
    self._table_names = set()
    self._alias_names = set()
    self._limit = None
    self._parsed = sqlparse.parse(self.stripped())
    for statement in self._parsed:
      self.__extract_from_token(statement)
      self._limit = self._extract_limit_from_query(statement)
    self._table_names = self._table_names - self._alias_names

  @property
  def tables(self):
    return self._table_names

  @property
  def limit(self):
    return self._limit

  def is_select(self):
    return self._parsed[0].get_type() == 'SELECT'

  def is_explain(self):
    return self.stripped().upper().startswith('EXPLAIN')

  def is_readonly(self):
    return self.is_select() or self.is_explain()

  def stripped(self):
    return self.sql.strip(' \t\n;')

  def get_statements(self):
    statements = []
    for statement in self._parsed:
      if statement:
        sql = str(statement).strip(' \n;\t')
        if sql:
          statements.append(sql)
    return statements

  @staticmethod
  def __precedes_table_name(token_value):
    for keyword in PRECEDES_TABLE_NAME:
      if keyword in token_value:
        return True
    return False

  @staticmethod
  def get_full_name(identifier):
    if len(identifier.tokens) > 1 and identifier.tokens[1].value == '.':
      return '{}.{}'.format(identifier.tokens[0].value,
                 identifier.tokens[2].value)
    return identifier.get_real_name()

  @staticmethod
  def __is_result_operation(keyword):
    for operation in RESULT_OPERATIONS:
      if operation in keyword.upper():
        return True
    return False

  @staticmethod
  def __is_identifier(token):
    return isinstance(token, (IdentifierList, Identifier))

  def __process_identifier(self, identifier):
    if '(' not in '{}'.format(identifier):
      self._table_names.add(self.get_full_name(identifier))
      return

    # store aliases
    if hasattr(identifier, 'get_alias'):
      self._alias_names.add(identifier.get_alias())
    if hasattr(identifier, 'tokens'):
      # some aliases are not parsed properly
      if identifier.tokens[0].ttype == Name:
        self._alias_names.add(identifier.tokens[0].value)
    self.__extract_from_token(identifier)

  def as_create_table(self, table_name, overwrite=False):
    exec_sql = ''
    sql = self.stripped()
    if overwrite:
      exec_sql = 'DROP TABLE IF EXISTS {};\n'.format(table_name)
    exec_sql += 'CREATE TABLE {} AS \n{}'.format(table_name, sql)
    return exec_sql

  def __extract_from_token(self, token):
    if not hasattr(token, 'tokens'):
      return

    table_name_preceding_token = False

    for item in token.tokens:
      if item.is_group and not self.__is_identifier(item):
        self.__extract_from_token(item)

      if item.ttype in Keyword:
        if self.__precedes_table_name(item.value.upper()):
          table_name_preceding_token = True
          continue

      if not table_name_preceding_token:
        continue

      if item.ttype in Keyword or item.value == ',':
        if (self.__is_result_operation(item.value) or
            item.value.upper() == ON_KEYWORD):
          table_name_preceding_token = False
          continue
        # FROM clause is over
        break

      if isinstance(item, Identifier):
        self.__process_identifier(item)

      if isinstance(item, IdentifierList):
        for token in item.tokens:
          if self.__is_identifier(token):
            self.__process_identifier(token)

  def _get_limit_from_token(self, token):
    if token.ttype == sqlparse.tokens.Literal.Number.Integer:
      return int(token.value)
    elif token.is_group:
      return int(token.get_token_at_offset(1).value)

  def _extract_limit_from_query(self, statement):
    limit_token = None
    for pos, item in enumerate(statement.tokens):
      if item.ttype in Keyword and item.value.lower() == 'limit':
        limit_token = statement.tokens[pos + 2]
        return self._get_limit_from_token(limit_token)

  def get_query_with_new_limit(self, new_limit):
    if not self._limit:
      return self.sql + ' LIMIT ' + str(new_limit)
    limit_pos = None
    tokens = self._parsed[0].tokens
    # Add all items to before_str until there is a limit
    for pos, item in enumerate(tokens):
      if item.ttype in Keyword and item.value.lower() == 'limit':
        limit_pos = pos
        break
    limit = tokens[limit_pos + 2]
    if limit.ttype == sqlparse.tokens.Literal.Number.Integer:
      tokens[limit_pos + 2].value = new_limit
    elif limit.is_group:
      tokens[limit_pos + 2].value = (
        '{}, {}'.format(next(limit.get_identifiers()), new_limit)
      )

    str_res = ''
    for i in tokens:
      str_res += str(i.value)
    return str_res

class SqlExtractor(BaseExtractor):
  """提取sql语句"""

  @staticmethod
  def get_full_name(identifier, including_dbs=False):
    if len(identifier.tokens) > 1 and identifier.tokens[1].value == '.':
      a = identifier.tokens[0].value
      b = identifier.tokens[2].value
      db_table = (a, b)
      full_tree = '{}.{}'.format(a, b)
      if len(identifier.tokens) == 3:
        return full_tree
      else:
        i = identifier.tokens[3].value
        c = identifier.tokens[4].value
        if i == ' ':
          return full_tree
        full_tree = '{}.{}.{}'.format(a, b, c)
        return full_tree
    return None, None

if __name__ == '__main__':
  sql = """select
  b.product_name "产品",
  count(a.order_id) "订单量",
  b.selling_price_max "销售价",
  b.gross_profit_rate_max/100 "毛利率",
  case when b.business_type =1 then '自营消化' when b.business_type =2 then '服务商消化' end "消化模式"
  from(select 'CRM签单' label,date(d.update_ymd) close_ymd,c.product_name,c.product_id,
    a.order_id,cast(a.recipient_amount as double) amt,d.cost
    from mysql4.dataview_fenxiao.fx_order a
    left join mysql4.dataview_fenxiao.fx_order_task b on a.order_id = b.order_id
    left join mysql7.dataview_trade.ddc_product_info c on cast(c.product_id as varchar) = a.product_ids and c.snapshot_version = 'SELLING'
    inner join (select t1.par_order_id,max(t1.update_ymd) update_ymd,
          sum(case when t4.product2_type = 1 and t5.shop_id is not null then t5.price else t1.order_hosted_price end) cost
          from hive.bdc_dwd.dw_mk_order t1
          left join hive.bdc_dwd.dw_mk_order_status t2 on t1.order_id = t2.order_id and t2.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
          left join mysql7.dataview_trade.mk_order_merchant t3 on t1.order_id = t3.order_id
          left join mysql7.dataview_trade.ddc_product_info t4 on t4.product_id = t3.MERCHANT_ID and t4.snapshot_version = 'SELLING'
          left join mysql4.dataview_scrm.sc_tprc_product_info t5 on t5.product_id = t4.product_id and t5.shop_id = t1.seller_id
          where t1.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
          and t2.valid_state in (100,200) ------有效订单
          and t1.order_mode = 10  --------产品消耗订单
          and t2.complete_state = 1 -----订单已经完成
          group by t1.par_order_id
    ) d on d.par_order_id = b.task_order_id
    where c.product_type = 0 and date(from_unixtime(a.last_recipient_time)) > date('2016-01-01') and a.payee_type <> 1 -----------已收款
    UNION ALL
    select '企业管家消耗' label,date(c.update_ymd) close_ymd,b.product_name,b.product_id,
    a.task_id,(case when a.yb_price = 0 and b.product2_type = 1 then b.selling_price_min else a.yb_price end) amt,
    (case when a.yb_price = 0 and b.product2_type = 2 then 0 when b.product2_type = 1 and e.shop_id is not null then e.price else c.order_hosted_price end) cost
    from mysql8.dataview_tprc.tprc_task a
    left join mysql7.dataview_trade.ddc_product_info b on a.product_id = b.product_id and b.snapshot_version = 'SELLING'
    inner join hive.bdc_dwd.dw_mk_order c on a.order_id = c.order_id and c.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
    left join hive.bdc_dwd.dw_mk_order_status d on d.order_id = c.order_id and d.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
    left join mysql4.dataview_scrm.sc_tprc_product_info e on e.product_id = b.product_id and e.shop_id = c.seller_id
    where d.valid_state in (100,200) and d.complete_state = 1 and c.order_mode = 10
    union ALL
    select '交易管理系统' label,date(t6.close_ymd) close_ymd,t4.product_name,t4.product_id,
    t1.order_id,(t1.order_hosted_price-t1.order_refund_price) amt,
    (case when t1.order_mode <> 11 then t7.user_amount when t1.order_mode = 11 and t4.product2_type = 1 and t5.shop_id is not null then t5.price else t8.cost end) cost
    from hive.bdc_dwd.dw_mk_order t1
    left join hive.bdc_dwd.dw_mk_order_business t2 on t1.order_id = t2.order_id and t2.acct_day=substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
    left join mysql7.dataview_trade.mk_order_merchant t3 on t1.order_id = t3.order_id
    left join mysql7.dataview_trade.ddc_product_info t4 on t4.product_id = t3.MERCHANT_ID and t4.snapshot_version = 'SELLING'
    left join mysql4.dataview_scrm.sc_tprc_product_info t5 on t5.product_id = t4.product_id and t5.shop_id = t1.seller_id
    left join hive.bdc_dwd.dw_fact_task_ss_daily t6 on t6.task_id = t2.task_id and t6.acct_time=date_format(date_add('day',-1,current_date),'%Y-%m-%d')
    left join (select a.task_id,sum(a.user_amount) user_amount
          from hive.bdc_dwd.dw_fn_deal_asyn_order a
          where a.is_new=1 and a.service='Trade_Payment' and a.state=1 and a.acct_day=substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
          group by a.task_id)t7 on t7.task_id = t2.task_id     
    left join (select t1.par_order_id,sum(t1.order_hosted_price - t1.order_refund_price) cost
          from hive.bdc_dwd.dw_mk_order t1
          where t1.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2) and t1.order_type = 1 and t1.order_stype = 4 and t1.order_mode = 12
          group by t1.par_order_id) t8 on t1.order_id = t8.par_order_id
    where t1.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) as varchar),9,2)
    and t1.order_type = 1 and t1.order_stype in (4,5) and t1.order_mode <> 12 and t4.product_id is not null and t1.order_hosted_price > 0 and t6.is_deal = 1 and t6.close_ymd >= '2018-12-31'
  )a
  left join mysql7.dataview_trade.ddc_product_info b on a.product_id = b.product_id and b.snapshot_version = 'SELLING'
  where b.product2_type = 1 -------标品
  and close_ymd between DATE_ADD('day',-7,CURRENT_DATE) and DATE_ADD('day',-1,CURRENT_DATE)
  GROUP BY b.product_name,
  b.selling_price_max,
  b.gross_profit_rate_max/100,
  b.actrul_supply_num,
  case when b.business_type =1 then '自营消化' when b.business_type =2 then '服务商消化' end
  order by count(a.order_id) desc
  limit 10"""
  sql_extractor = SqlExtractor(sql)

  print(sql_extractor.sql)
  print(sql_extractor.tables)

输出结果:

{'mysql8.dataview_tprc.tprc_task', 'hive.bdc_dwd.dw_mk_order', 'mysql4.dataview_fenxiao.fx_order_task', 'mysql4.dataview_fenxiao.fx_order', 'hive.bdc_dwd.dw_mk_order_business', 'mysql7.dataview_trade.mk_order_merchant', 'mysql4.dataview_scrm.sc_tprc_product_info', 'hive.bdc_dwd.dw_fn_deal_asyn_order', 'hive.bdc_dwd.dw_fact_task_ss_daily', 'mysql7.dataview_trade.ddc_product_info', 'hive.bdc_dwd.dw_mk_order_status'}

格式化结果:

SELECT b.product_name "产品",
    count(a.order_id) "订单量",
    b.selling_price_max "销售价",
    b.gross_profit_rate_max/100 "毛利率",
    CASE
      WHEN b.business_type =1 THEN '自营消化'
      WHEN b.business_type =2 THEN '服务商消化'
    END "消化模式" from
 (SELECT 'CRM签单' label,date(d.update_ymd) close_ymd,c.product_name,c.product_id, a.order_id,cast(a.recipient_amount AS DOUBLE) amt,d.cost
  FROM mysql4.dataview_fenxiao.fx_order a
  LEFT JOIN mysql4.dataview_fenxiao.fx_order_task b ON a.order_id = b.order_id
  LEFT JOIN mysql7.dataview_trade.ddc_product_info c ON cast(c.product_id AS varchar) = a.product_ids
  AND c.snapshot_version = 'SELLING'
  INNER JOIN
   (SELECT t1.par_order_id,max(t1.update_ymd) update_ymd, sum(CASE
                                  WHEN t4.product2_type = 1
                                     AND t5.shop_id IS NOT NULL THEN t5.price
                                  ELSE t1.order_hosted_price
                                END) cost
   FROM hive.bdc_dwd.dw_mk_order t1
   LEFT JOIN hive.bdc_dwd.dw_mk_order_status t2 ON t1.order_id = t2.order_id
   AND t2.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) AS varchar),9,2)
   LEFT JOIN mysql7.dataview_trade.mk_order_merchant t3 ON t1.order_id = t3.order_id
   LEFT JOIN mysql7.dataview_trade.ddc_product_info t4 ON t4.product_id = t3.MERCHANT_ID
   AND t4.snapshot_version = 'SELLING'
   LEFT JOIN mysql4.dataview_scrm.sc_tprc_product_info t5 ON t5.product_id = t4.product_id
   AND t5.shop_id = t1.seller_id
   WHERE t1.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) AS varchar),9,2)
    AND t2.valid_state IN (100,200)------有效订单

    AND t1.order_mode = 10 --------产品消耗订单

    AND t2.complete_state = 1 -----订单已经完成

   GROUP BY t1.par_order_id ) d ON d.par_order_id = b.task_order_id
  WHERE c.product_type = 0
   AND date(from_unixtime(a.last_recipient_time)) > date('2016-01-01')
   AND a.payee_type <> 1 -----------已收款

  UNION ALL SELECT '企业管家消耗' label,date(c.update_ymd) close_ymd,b.product_name,b.product_id, a.task_id,(CASE
                    WHEN a.yb_price = 0
                         AND b.product2_type = 1 THEN b.selling_price_min
                            ELSE a.yb_price
                       END) amt, (CASE
                     WHEN a.yb_price = 0
                       AND b.product2_type = 2 THEN 0
                         WHEN b.product2_type = 1
                           AND e.shop_id IS NOT NULL THEN e.price
                          ELSE c.order_hosted_price
                       END) cost
  FROM mysql8.dataview_tprc.tprc_task a
  LEFT JOIN mysql7.dataview_trade.ddc_product_info b ON a.product_id = b.product_id
  AND b.snapshot_version = 'SELLING'
  INNER JOIN hive.bdc_dwd.dw_mk_order c ON a.order_id = c.order_id
  AND c.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) AS varchar),9,2)
  LEFT JOIN hive.bdc_dwd.dw_mk_order_status d ON d.order_id = c.order_id
  AND d.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) AS varchar),9,2)
  LEFT JOIN mysql4.dataview_scrm.sc_tprc_product_info e ON e.product_id = b.product_id
  AND e.shop_id = c.seller_id
  WHERE d.valid_state IN (100,200)
   AND d.complete_state = 1
   AND c.order_mode = 10
  UNION ALL SELECT '交易管理系统' label,date(t6.close_ymd) close_ymd,t4.product_name,t4.product_id, t1.order_id,(t1.order_hosted_price-t1.order_refund_price) amt, (CASE
              WHEN t1.order_mode <> 11 THEN t7.user_amount
              WHEN t1.order_mode = 11
                AND t4.product2_type = 1
                AND t5.shop_id IS NOT NULL THEN t5.price
              ELSE t8.cost
            END) cost
  FROM hive.bdc_dwd.dw_mk_order t1
  LEFT JOIN hive.bdc_dwd.dw_mk_order_business t2 ON t1.order_id = t2.order_id
  AND t2.acct_day=substring(cast(DATE_ADD('day',-1,CURRENT_DATE) AS varchar),9,2)
  LEFT JOIN mysql7.dataview_trade.mk_order_merchant t3 ON t1.order_id = t3.order_id
  LEFT JOIN mysql7.dataview_trade.ddc_product_info t4 ON t4.product_id = t3.MERCHANT_ID
  AND t4.snapshot_version = 'SELLING'
  LEFT JOIN mysql4.dataview_scrm.sc_tprc_product_info t5 ON t5.product_id = t4.product_id
  AND t5.shop_id = t1.seller_id
  LEFT JOIN hive.bdc_dwd.dw_fact_task_ss_daily t6 ON t6.task_id = t2.task_id
  AND t6.acct_time=date_format(date_add('day',-1,CURRENT_DATE),'%Y-%m-%d')
  LEFT JOIN
   (SELECT a.task_id,sum(a.user_amount) user_amount
   FROM hive.bdc_dwd.dw_fn_deal_asyn_order a
   WHERE a.is_new=1
    AND a.service='Trade_Payment'
    AND a.state=1
    AND a.acct_day=substring(cast(DATE_ADD('day',-1,CURRENT_DATE) AS varchar),9,2)
   GROUP BY a.task_id)t7 ON t7.task_id = t2.task_id
  LEFT JOIN
   (SELECT t1.par_order_id,sum(t1.order_hosted_price - t1.order_refund_price) cost
   FROM hive.bdc_dwd.dw_mk_order t1
   WHERE t1.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) AS varchar),9,2)
    AND t1.order_type = 1
    AND t1.order_stype = 4
    AND t1.order_mode = 12
   GROUP BY t1.par_order_id) t8 ON t1.order_id = t8.par_order_id
  WHERE t1.acct_day = substring(cast(DATE_ADD('day',-1,CURRENT_DATE) AS varchar),9,2)
   AND t1.order_type = 1
   AND t1.order_stype IN (4,5)
   AND t1.order_mode <> 12
   AND t4.product_id IS NOT NULL
   AND t1.order_hosted_price > 0
   AND t6.is_deal = 1
   AND t6.close_ymd >= '2018-12-31' )a
LEFT JOIN mysql7.dataview_trade.ddc_product_info b ON a.product_id = b.product_id
AND b.snapshot_version = 'SELLING'
WHERE b.product2_type = 1 -------标品
AND close_ymd BETWEEN DATE_ADD('day',-7,CURRENT_DATE) AND DATE_ADD('day',-1,CURRENT_DATE)
GROUP BY b.product_name,
     b.selling_price_max,
     b.gross_profit_rate_max/100,
     b.actrul_supply_num,
     CASE
       WHEN b.business_type =1 THEN '自营消化'
       WHEN b.business_type =2 THEN '服务商消化'
     END
ORDER BY count(a.order_id) DESC
LIMIT 10

以上这篇python如何解析复杂sql,实现数据库和表的提取的实例剖析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:解决pymysql cursor.fetchall() 获取不到数据的问题
下一篇:pymysql之cur.fetchall() 和cur.fetchone()用法详解
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。