脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python实现电视里的5毛特效实例代码详解

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

前段时间接触了一个批量抠图的模型库,而后在一些视频中找到灵感,觉得应该可以通过抠图的方式,给视频换一个不同的场景,于是就有了今天的文章。

我们先看看能实现什么效果,先来个正常版的,先看看原场景:

Python实现电视里的5毛特效实例代码详解

下面是我们切换场景后的样子:

Python实现电视里的5毛特效实例代码详解

看起来效果还是不错的,有了这个我们就可以随意切换场景,坟头蹦迪不是梦。另外,我们再来看看另外一种效果,相比之下要狂放许多:

Python实现电视里的5毛特效实例代码详解

实现步骤

我们都知道,视频是由一帧一帧的画面组成的,每一帧都是一张图片,我们要实现对视频的修改就需要对视频中每一帧画面进行修改。所以在最开始,我们需要获取视频每一帧画面。

在我们获取帧之后,需要抠取画面中的人物。

抠取人物之后,就需要读取我们的场景图片了,在上面的例子中背景都是静态的,所以我们只需要读取一次场景。在读取场景之后我们切换每一帧画面的场景,并写入新的视频。

这时候我们只是生成了一个视频,我们还需要添加音频。而音频就是我们的原视频中的音频,我们读取音频,并给新视频设置音频就好了。

具体步骤如下:

  • 读取视频,获取每一帧画面
  • 批量抠图
  • 读取场景图片
  • 对每一帧画面进行场景切换
  • 写入视频
  • 读取原视频的音频
  • 给新视频设置音频

因为上面的步骤还是比较耗时的,所以在视频完成后通过邮箱发送通知,告诉我视频制作完成。

模块安装

我们需要使用到的模块主要有如下几个:

pillow
opencv
moviepy
paddlehub

我们都可以直接用pip安装:

pip install pillow
pip install opencv-python
pip install moviepy

其中OpenCV有一些适配问题,建议选取3.0以上版本。

在我们使用paddlehub之前,我们需要安装paddlepaddle:具体安装步骤可以参见官网。用paddlehub抠图参考:别再自己抠图了,Python用5行代码实现批量抠图。我们这里直接用pip安装cpu版本的:

# 安装paddlepaddle
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
# 安装paddlehub
pip install -i https://mirror.baidu.com/pypi/simple paddlehub

有了这些准备工作就可以开始我们功能的实现了。

具体实现

我们导入如下包:

import cv2  # opencv
import mail  # 自定义包,用于发邮件
import math
import numpy as np
from PIL import Image  # pillow
import paddlehub as hub
from moviepy.editor import *

其中Pillow和opencv导入的名称不太一样,还有就是我自定义的mail模块。另外我们还要先准备一些路径:

# 当前项目根目录,系统自动获取当前目录
BASE_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "."))
# 每一帧画面保存的地址
frame_path = BASE_DIR + '\\frames\\'
# 抠好的图片位置
humanseg_path = BASE_DIR + '\\humanseg_output\\'
# 最终视频的保存路径
output_video = BASE_DIR + '\\result.mp4'

接下来我们按照上面说的步骤一个一个实现。

(1)读取视频,获取每一帧画面

OpenCV中提供了读取帧的函数,我们只需要使用VideoCapture类读取视频,然后调用read函数读取帧,read方法返回两个参数,ret为是否有下一帧,frame为当前帧的ndarray对象。完整代码如下:

def getFrame(video_name, save_path):
  """
  读取视频将视频逐帧保存为图片,并返回视频的分辨率size和帧率fps
  :param video_name: 视频的名称
  :param save_path: 保存的路径
  :return: fps帧率,size分辨率
  """
  # 读取视频
  video = cv2.VideoCapture(video_name)
 
  # 获取视频帧率
  fps = video.get(cv2.CAP_PROP_FPS)
  # 获取画面大小
  width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
  height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
  size = (width, height)
 
  # 获取帧数,用于给图片命名
  frame_num = str(video.get(7))
  name = int(math.pow(10, len(frame_num)))
  # 读取帧,ret为是否还有下一帧,frame为当前帧的ndarray对象
  ret, frame = video.read()
  while ret:
    cv2.imwrite(save_path + str(name) + '.jpg', frame)
    ret, frame = video.read()
    name += 1
  video.release()
  return fps, size

在标处,我获取了帧的总数,然后通过如下公式获取比帧数大的整十整百的数:

frame_name = math.pow(10, len(frame_num))

这样做是为了让画面逐帧排序,这样读取的时候就不会乱。另外我们获取了视频的帧率和分辨率,这两个参数在我们创建视频时需要用到。这里需要注意的是opencv3.0以下版本获取帧率和画面大小的写法有些许差别。

(2)批量抠图

批量抠图需要用到paddlehub中的模型库,代码很简单,这里就不多说了:

def getHumanseg(frames):
  """
  对帧图片进行批量抠图
  :param frames: 帧的路径
  :return:
  """
  # 加载模型库
  humanseg = hub.Module(name='deeplabv3p_xception65_humanseg')
  # 准备文件列表
  files = [frames + i for i in os.listdir(frames)]
  # 抠图
  humanseg.segmentation(data={'image': files})

我们执行上面函数后会在项目下生成一个humanseg_output目录,抠好的图片就在里面。

(3)读取场景图片

这也是简单的图片读取,我们使用pillow中的Image对象:

def readBg(bgname, size):
  """
  读取背景图片,并修改尺寸
  :param bgname: 背景图片名称
  :param size: 视频分辨率
  :return: Image对象
  """
  im = Image.open(bgname)
  return im.resize(size)

这里的返回的对象并非ndarray对象,而是Pillow中定义的类对象。

(4)对每一帧画面进行场景切换

简单来说就是将抠好的图片和背景图片合并,我们知道抠好的图片都在humanseg_output目录,这也就是为什么最开始要准备相应的变量存储该目录的原因:

def setImageBg(humanseg, bg_im):
  """
  将抠好的图和背景图片合并
  :param humanseg: 抠好的图
  :param bg_im: 背景图片,这里和readBg()函数返回的类型一样
  :return: 合成图的ndarray对象
  """
  # 读取透明图片
  im = Image.open(humanseg)
  # 分离色道
  r, g, b, a = im.split()
  # 复制背景,以免源背景被修改
  bg_im = bg_im.copy()
  # 合并图片
  bg_im.paste(im, (0, 0), mask=a)
  return np.array(bg_im.convert('RGB'))[:, :, ::-1]

在标处,我们复制了背景,如果少了这一步的话,生成的就是我们上面的“千手观音效果”了。

其它步骤都很好理解,只有返回值比较长,我们来详细看一下:

# 将合成图转换成RGB,这样A通道就没了
bg_im = bg_im.convert('RGB')
# 将Image对象转换成ndarray对象,方便opencv读取
im_array = np.array(bg_im)
# 此时im_array为rgb模式,而OpenCV为bgr模式,我们通过下面语句将rgb转换成bgr
bgr_im_array = im_array[:, :, ::-1]

最后bgr_im_array就是我们最终的返回结果。

(5)写入视频

为了节约空间,我并非等将写入图片放在合并场景后面,而是边合并场景边写入视频:

def writeVideo(humanseg, bg_im, fps, size):
  """
  :param humanseg: jpg图片的路径
  :param bgname: 背景图片
  :param fps: 帧率
  :param size: 分辨率
  :return:
  """
  # 写入视频
  fourcc = cv2.VideoWriter_fourcc(*'mp4v')
  out = cv2.VideoWriter('green.mp4', fourcc, fps, size)
 
  # 将每一帧设置背景
  files = [humanseg + i for i in os.listdir(humanseg)]
  for file in files:
    # 循环合并图片
    im_array = setImageBg(file, bg_im)
    # 逐帧写入视频
    out.write(im_array)
  out.release()

上面的代码也非常简单,执行完成后项目下会生成一个green.mp4,这是一个没有音频的视频,后面就需要我们获取音频然后混流了。

(6)读取原视频的音频

因为在opencv中没找到音频相关的处理,所以选用moviepy,使用起来也非常方便:

def getMusic(video_name):
  """
  获取指定视频的音频
  :param video_name: 视频名称
  :return: 音频对象
  """
  # 读取视频文件
  video = VideoFileClip(video_name)
  # 返回音频
  return video.audio

然后就是混流了。

(7)给新视频设置音频

这里同样使用moviepy,传入视频名称和音频对象进行混流:

def addMusic(video_name, audio):
  """实现混流,给video_name添加音频"""
  # 读取视频
  video = VideoFileClip(video_name)
  # 设置视频的音频
  video = video.set_audio(audio)
  # 保存新的视频文件
  video.write_videofile(output_video)

其中output_video是我们在最开始定义的变量。

(8)删除过渡文件

在我们生产视频时,会产生许多过渡文件,在视频合成后我们将它们删除:

def deleteTransitionalFiles():
  """删除过渡文件"""
  frames = [frame_path + i for i in os.listdir(frame_path)]
  humansegs = [humanseg_path + i for i in os.listdir(humanseg_path)]
  for frame in frames:
    os.remove(frame)
  for humanseg in humansegs:
    os.remove(humanseg)

最后就是将整个流程整合一下。

(8)整合

我们将上面完整的流程合并成一个函数:

def changeVideoScene(video_name, bgname):
  """
  :param video_name: 视频的文件
  :param bgname: 背景图片
  :return:
  """
  # 读取视频中每一帧画面
  fps, size = getFrame(video_name, frame_path)
 
  # 批量抠图
  getHumanseg(frame_path)
 
  # 读取背景图片
  bg_im = readBg(bgname, size)
 
  # 将画面一帧帧写入视频
  writeVideo(humanseg_path, bg_im, fps, size)
 
  # 混流
  addMusic('green.mp4', getMusic(video_name))
 
  # 删除过渡文件
  deleteTransitionalFiles()

(9)在main中调用

我们可以把前面定义的路径也放进了:

if __name__ == '__main__':
 
  # 当前项目根目录
  BASE_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "."))
  # 每一帧画面保存的地址
  frame_path = BASE_DIR + '\\frames\\'
  # 抠好的图片位置
  humanseg_path = BASE_DIR + '\\humanseg_output\\'
  # 最终视频的保存路径
  output_video = BASE_DIR + '\\result.mp4'
 
  if not os.path.exists(frame_path):
    os.makedirs(frame_path)
 
  try:
    # 调用函数制作视频
    changeVideoScene('jljt.mp4', 'bg.jpg')
    # 当制作完成发送邮箱
    mail.sendMail('你的视频已经制作完成')
  except Exception as e:
    # 当发生错误,发送错误信息
    mail.sendMail('在制作过程中遇到了问题' + e.__str__())

这样我们就完成了完整的流程。

发送邮件

邮件的发送又是属于另外的内容了,我定义了一个mail.py文件,具体代码如下:

import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart   # 一封邮件
 
 
def sendMail(msg):  
  # 
  sender = '发件人'
  to_list = [
    '收件人'
  ]
  subject = '视频制作情况'
 
  # 创建邮箱
  em = MIMEMultipart()
  em['subject'] = subject
  em['From'] = sender
  em['To'] = ",".join(to_list)
 
  # 邮件的内容
  content = MIMEText(msg)
  em.attach(content)
 
  # 发送邮件
  # 1、连接服务器
  smtp = smtplib.SMTP()
  smtp.connect('smtp.163.com')
  # 2、登录
  smtp.login(sender, '你的密码或者授权码')
  # 3、发邮件
  smtp.send_message(em)
  # 4、关闭连接
  smtp.close()

里面的邮箱我是直接写死了,大家可以自由发挥。为了方便,推荐发件人使用163邮箱,收件人使用QQ邮箱。另外在登录的时候直接使用密码比较方便,但是有安全隐患。

总结

老实说上述程序的效率非常低,不仅占空间,而且耗时也比较长。在最开始我切换场景选择的是遍历图片每一个像素,而后找到了更加高效的方式取代了。但是帧画面的保存,和jpg图片的存储都很耗费空间。

另外程序设计还是有许多不合理的地方,像是ndarray对象和Image的区分度不高,另外有些函数选择传入路径,而有些函数选择传入文件对象也很容易让人糊涂。

最后说一下,我们用上面的方式不仅可以做静态的场景切换,还可以做动态的场景切换,这样我们就可以制作更加丰富的视频。当然,效率依旧是个问题!

上一篇:django 利用Q对象与F对象进行查询的实现
下一篇:python中wx模块的具体使用方法
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。