脚本专栏 
首页 > 脚本专栏 > 浏览文章

pyspark 随机森林的实现

(编辑:jimmy 日期: 2024/10/22 浏览:3 次 )

随机森林是由许多决策树构成,是一种有监督机器学习方法,可以用于分类和回归,通过合并汇总来自个体决策树的结果来进行预测,采用多数选票作为分类结果,采用预测结果平均值作为回归结果。

“森林”的概念很好理解,“随机”是针对森林中的每一颗决策树,有两种含义:第一种随机是数据采样随机,构建决策树的训练数据集通过有放回的随机采样,并且只会选择一定百分比的样本,这样可以在数据集合存在噪声点、异常点的情况下,有些决策树的构造过程中不会选择到这些噪声点、异常点从而达到一定的泛化作用在一定程度上抑制过拟合;第二种随机是特征随机,训练集会包含一系列特征,随机选择一部分特征进行决策树的构建。通过这些差异点来训练的每一颗决策树都会学习输入与输出的关系,随机森林的强大之处也就在于此。

废话不多说,直接上代码:

from pyspark import SparkConf
from pyspark.sql import SparkSession
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import StringIndexer
from pyspark.ml.classification import RandomForestClassifier
from pyspark.sql import Row
import pandas as pd
from sklearn import metrics
 
if __name__ == "__main__":
  appname = "RandomForestClassifier"
  master ="local[4]" 
  conf = SparkConf().setAppName(appname).setMaster(master) #spark配置        
  spark=SparkSession.builder.config(conf=conf).getOrCreate()#spark实例化
  
#读取数据
  data=spark.read.csv('良恶性乳腺癌数据.csv',header=True)
  
#构造训练数据集
  dataSet = data.na.fill('0').rdd.map(list)#用0填充空值  
  trainData, testData= dataSet.randomSplit([0.7, 0.3], seed=7)
  trainingSet = trainData.map(lambda x:Row(label=x[-1], features=Vectors.dense(x[:-1]))).toDF()  
  train_num = trainingSet.count()
  print("训练样本数:{}".format(train_num))
 
   
#使用随机森林进行训练
  stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
  si_model = stringIndexer.fit(trainingSet)
  train_tf = si_model.transform(trainingSet)
  train_tf.show(5)  
  rf = RandomForestClassifier(numTrees=100, labelCol="indexed", seed=7)
  rfModel = rf.fit(train_tf)
   
#输出模型特征重要性、子树权重
  print("模型特征重要性:{}".format(rfModel.featureImportances))
  print("模型特征数:{}".format(rfModel.numFeatures))
  
#预测测试集
  testSet = testData.map(lambda x:Row(label=x[-1], features=Vectors.dense(x[:-1]))).toDF()
  test_num=testSet.count()
  print("测试样本数:{}".format(test_num))  
  si_model = stringIndexer.fit(testSet)
  test_tf = si_model.transform(testSet)  
  predictResult = rfModel.transform(test_tf)
  predictResult.show(5)
  spark.stop()
 
#将预测结果转为python中的dataframe
  columns=predictResult.columns#提取强表字段
  predictResult=predictResult.take(test_num)#
  predictResult=pd.DataFrame(predictResult,columns=columns)#转为python中的dataframe
 
#性能评估
  y=list(predictResult['indexed'])
  y_pred=list(predictResult['prediction'])
  y_predprob=[x[1] for x in list(predictResult['probability'])]
  precision_score=metrics.precision_score(y, y_pred)#精确率
  recall_score=metrics.recall_score(y, y_pred)#召回率
  accuracy_score=metrics.accuracy_score(y, y_pred)#准确率
  f1_score=metrics.f1_score(y, y_pred)#F1分数
  auc_score=metrics.roc_auc_score(y, y_predprob)#auc分数
  print("精确率:",precision_score )#精确率
  print("召回率:",recall_score )#召回率
  print("准确率:",accuracy_score )#准确率
  print("F1分数:", f1_score)#F1分数
  print("auc分数:",auc_score )#auc分数

运行结果:

pyspark 随机森林的实现

上一篇:500行python代码实现飞机大战
下一篇:matplotlib jupyter notebook 图像可视化 plt show操作
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?