利用pyecharts读取csv并进行数据统计可视化的实现
(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )
因为需要一个html形式的数据统计界面,所以做了一个基于pyecharts包的可视化程序,当然matplotlib还是常用的数据可视化包,只不过各有优劣;基本功能概述就是读取csv文件数据,对每列进行数据统计并可视化,最后形成html动态界面,选择pyecharts的最主要原因就是这个动态界面简直非常炫酷。
先上成品图:
数据读取和数据分析模块:
#导入csv模块 import csv #导入可视化模块 from matplotlib import pyplot as plt from pylab import mpl import numpy as np import random from pyecharts import Line,Pie,Grid,Bar,WordCloud #指定文件名,然后使用 with open() as 打开 python_file = 'haiyang.csv' #filename = 'release/111.csv' #python3 LieCharts.py test_chart --python_file 'haiyang.csv' with open(python_file) as f: #创建一个阅读器:将f传给csv.reader reader = csv.reader(f) #使用csv的next函数,将reader传给next,将返回文件的下一行 header_row = next(reader) for index, column_header in enumerate(header_row): print(index, column_header) #读取置信度 #创建置信度的列表 confidences =[] #创建风险等级数组 highRisk = [] middleRisk = [] lowRisk = [] noRisk = [] person = [] #创建时间点 timePoint = [] #文件信息 fileInformation = [] #遍历reader的余下的所有行(next读取了第一行,reader每次读取后将返回下一行) for row in reader: # 下面就是对某一列数据进行遍历,因为项目保密,就不列出具体代码了,其实就是各种循环语句,大家根据自己的数据简单写一下就行 fileInformation.append('某某某某') fileInformation.append(row[0]) fileInformation.append(row[1]) fileInformation.append(row[2]) fileInformation.append(len(confidences)) int_confidences = [] for i in confidences: # 同上 len_noRisk = len(noRisk) len_lowRisk = len(lowRisk) len_middleRisk = len(middleRisk) len_highRisk = len(highRisk) len_person = len(person) total = int(len_person+len_highRisk+len_middleRisk+len_lowRisk+len_noRisk) if (len_highRisk > total/2): # 同上
数据可视化模块:
pie_title = Pie('某某某分析报表', "", title_pos='center',title_top="1%",title_text_size=42,subtitle_text_size=20) value=[10000,6181,4386,4055,4000] wordcloud=WordCloud(width=30,height=12,title="某某某某信息",title_pos="22%",title_top="12%",title_text_size=32) wordcloud1=WordCloud(width=30,height=12,title="某某:"+fileInformation[1],title_pos="22%",title_top="22%",title_text_size=26) wordcloud2=WordCloud(width=30,height=12,title="某某:"+fileInformation[2],title_pos="22%",title_top="30%",title_text_size=26) #wordcloud3=WordCloud(width=30,height=12,title="音频采样率:"+fileInformation[3],title_pos="22%",title_top="38%",title_text_size=26) #wordcloud4=WordCloud(width=30,height=12,title="总时长/s:"+fileInformation[4],title_pos="22%",title_top="36%",title_text_size=32) # wordcloud.add("",fileInformation,value,word_size_range=[20,100],rotate_step=3 # ,xaxis_pos=200,grid_left="1%",grid_bottom="50%",grid_top="5%",grid_right="80%") #折线图 line=Line("某某某某某走势图",title_pos='center',title_top="51%",title_text_size=32,width=600,height = 20) attr=timePoint line.add("某某某某某",attr,int_confidences,legend_pos="85%",legend_top="54%", mark_point=["max","min"],mark_line=["average"]) #饼图 attr=["某某某某", "某某某某", "某某某某", "某某某"] v1=[len_highRisk, len_middleRisk, len_lowRisk,len_noRisk] pie=Pie("某某某某某某某",title_pos="65%",title_top="12%",title_text_size=32,width=100,height = 100) pie.add("",attr,v1,radius=[0,30],center=[71,35], legend_pos="85%",legend_top="20%" ,legend_orient="vertical") grid=Grid(width = 1800 ,height= 900)#调整画布大小 grid.add(line,grid_left="5%",grid_bottom="2%",grid_top="60%") grid.add(pie_title,grid_bottom="10%") grid.add(wordcloud,grid_left="1%",grid_bottom="50%",grid_top="5%",grid_right="80%") grid.add(wordcloud1,grid_left="1%",grid_bottom="50%",grid_top="5%",grid_right="80%") grid.add(wordcloud2,grid_left="1%",grid_bottom="50%",grid_top="5%",grid_right="80%") #grid.add(wordcloud3,grid_left="1%",grid_bottom="50%",grid_top="5%",grid_right="80%") #grid.add(wordcloud4,grid_left="1%",grid_bottom="50%",grid_top="5%",grid_right="80%") grid.add(pie,grid_left="50%",grid_bottom="50%") #grid.render() grid.render(path='./release/XXXX.html')
根据需求这个还可以跨平台跨语言调用,比如C++程序调用python进行数据分析。
下一篇:Python稀疏矩阵及参数保存代码实现