脚本专栏 
首页 > 脚本专栏 > 浏览文章

如何基于线程池提升request模块效率

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

普通方法:爬取梨视频

import re
import time
import random
import requests
from lxml import etree

start_time = time.time()

url = "https://www.pearvideo.com/category_3"
headers = {
  "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}

ex = 'srcUrl="(.*",vdoUrl=srcUrl'

def request_video(url):
  """
  向视频链接发送请求
  """
  return requests.get(url=url, headers=headers).content

def save_video(content):
  """
  将视频的二进制数据保存到本地
  """
  video_name = str(random.randint(100, 999)) + ".mp4"
  with open(video_name, 'wb') as f:
    f.write(content)

    
# 获取首页源码
page_text = requests.get(url=url, headers=headers).text

tree = etree.HTML(page_text)
li_list = tree.xpath('//ul[@class="listvideo-list clearfix"]/li')

video_url_list = list()
for li in li_list:
  detail_url = "https://www.pearvideo.com/" + li.xpath('./div/a/@href')[0]
  
  # 获取该视频页面的源码
  detail_page_text = requests.get(url=detail_url, headers=headers).text
  
  # 正则匹配视频的URL
  video_url = re.findall(ex, detail_page_text, re.S)[0]
  video_url_list.append(video_url)
  
  content = request_video(video_url)
  save_video(content)


print("执行耗时: ", time.time() - start_time)

执行耗时: 147.22410440444946

使用线程池:爬取梨视频

# 使用线程池爬去梨视频的
import re
import time
import random
import requests
from lxml import etree
from multiprocessing.dummy import Pool


start_time = time.time()

url = "https://www.pearvideo.com/category_3"
headers = {
  "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}

ex = 'srcUrl="(.*",vdoUrl=srcUrl'

def request_video(url):
  """
  向视频链接发送请求
  """
  return requests.get(url=url, headers=headers).content

def save_video(content):
  """
  将视频的二进制数据保存到本地
  """
  video_name = str(random.randint(100, 999)) + ".mp4"
  with open(video_name, 'wb') as f:
    f.write(content)

    
# 获取首页源码
page_text = requests.get(url=url, headers=headers).text

tree = etree.HTML(page_text)
li_list = tree.xpath('//ul[@class="listvideo-list clearfix"]/li')

video_url_list = list()
for li in li_list:
  detail_url = "https://www.pearvideo.com/" + li.xpath('./div/a/@href')[0]
  
  # 获取该视频页面的源码
  detail_page_text = requests.get(url=detail_url, headers=headers).text
  
  # 正则匹配视频的URL
  video_url = re.findall(ex, detail_page_text, re.S)[0]
  video_url_list.append(video_url)
  
pool = Pool(4)
  
#使用线程池将视频的二进制数据下载下来
content_list = pool.map(request_video, video_url_list)
  
# 使用线程池将视频的二进制数据保存到本地
pool.map(save_video, content_list)  

print("执行耗时: ", time.time() - start_time)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:Python openpyxl 插入折线图实例
下一篇:python 画图 图例自由定义方式
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。