脚本专栏 
首页 > 脚本专栏 > 浏览文章

python实现梯度下降法

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

本文实例为大家分享了python实现梯度下降法的具体代码,供大家参考,具体内容如下

使用工具:Python(x,y) 2.6.6
运行环境:Windows10

问题:求解y=2*x1+x2+3,即使用梯度下降法求解y=a*x1+b*x2+c中参数a,b,c的最优值(监督学习)

训练数据:

x_train=[1, 2], [2, 1],[2, 3], [3, 5], [1,3], [4, 2], [7, 3], [4, 5], [11, 3], [8, 7]

y_train=[7, 8, 10, 14, 8, 13, 20, 16, 28,26]

测试数据:

x_test = [1, 4],[2, 2],[2, 5],[5, 3],[1,5],[4, 1]

# -*- coding: utf-8 -*-
"""
Created on Wed Nov 16 09:37:03 2016
@author: Jason
"""
 
import numpy as np
import matplotlib.pyplot as plt
 
# y=2 * (x1) + (x2) + 3 
 
rate = 0.001
x_train = np.array([[1, 2], [2, 1],[2, 3], [3, 5], [1, 3], [4, 2], [7, 3], [4, 5], [11, 3], [8, 7] ])
y_train = np.array([7, 8, 10, 14, 8, 13, 20, 16, 28, 26])
x_test = np.array([[1, 4],[2, 2],[2, 5],[5, 3],[1, 5],[4, 1]])
 
a = np.random.normal()
b = np.random.normal()
c = np.random.normal()
 
def h(x):
 return a*x[0]+b*x[1]+c
 
for i in range(100):
 sum_a=0
 sum_b=0
 sum_c=0
 
 for x, y in zip(x_train, y_train):  
  for xi in x:
   sum_a = sum_a+ rate*(y-h(x))*xi
   sum_b = sum_b+ rate*(y-h(x))*xi
   #sum_c = sum_c + rate*(y-h(x)) *1   
   
   a = a + sum_a
   b = b + sum_b
   c = c + sum_c
   plt.plot([h(xi) for xi in x_test])
 
 
print(a)
print(b)
print(c)
 
result=[h(xi) for xi in x_train]
print(result)
 
result=[h(xi) for xi in x_test]
print(result)
 
plt.show()

运行结果:

python实现梯度下降法

结论:线段是在逐渐逼近的,训练数据越多,迭代次数越多就越逼近真实值。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:PyQt5 如何让界面和逻辑分离的方法
下一篇:Python3 中sorted() 函数的用法
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。