脚本专栏 
首页 > 脚本专栏 > 浏览文章

pytorch 模型的train模式与eval模式实例

(编辑:jimmy 日期: 2025/1/17 浏览:3 次 )

原因

对于一些含有batch normalization或者是Dropout层的模型来说,训练时的froward和验证时的forward有计算上是不同的,因此在前向传递过程中需要指定模型是在训练还是在验证。

源代码

[docs] def train(self, mode=True):
  r"""Sets the module in training mode.

  This has any effect only on certain modules. See documentations of
  particular modules for details of their behaviors in training/evaluation
  mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
  etc.

  Returns:
   Module: self
  """
  self.training = mode
  for module in self.children():
   module.train(mode)
  return self

[docs] def eval(self):
  r"""Sets the module in evaluation mode.

  This has any effect only on certain modules. See documentations of
  particular modules for details of their behaviors in training/evaluation
  mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
  etc.
  """
  #该方法调用了nn.train()方法,把参数默认值改为false. 增加聚合性
  return self.train(False)

在使用含有BN层,dropout层的神经网路来说,必须要区分训练验证

以上这篇pytorch 模型的train模式与eval模式实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:详解python内置常用高阶函数(列出了5个常用的)
下一篇:Python开发之pip安装及使用方法详解