脚本专栏 
首页 > 脚本专栏 > 浏览文章

使用TensorFlow直接获取处理MNIST数据方式

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

MNIST是一个非常有名的手写体数字识别数据集,TensorFlow对MNIST数据集做了封装,可以直接调用。MNIST数据集包含了60000张图片作为训练数据,10000张图片作为测试数据,每一张图片都代表了0-9中的一个数字,图片大小都是28*28。虽然这个数据集只提供了训练和测试数据,但是为了验证训练网络的效果,一般从训练数据中划分出一部分数据作为验证数据,测试神经网络模型在不同参数下的效果。TensorFlow提供了一个类来处理MNIST数据。

代码如下:

from tensorflow.examples.tutorials.mnist import input_data

#载入MNIST数据集,如果指定地址下没有下载好的数据,那么TensorFlow会自动在网站上下载数据
mnist = input_data.read_data_sets("/tensorflow_google")

#打印训练数据大小
print("Training data size:", mnist.train.num_examples)

#打印验证集大小
print("Validating data size:", mnist.validation.num_examples)

#打印测试集大小
print("Testing data size:", mnist.test.num_examples)

#打印训练样例
print("Example training data", mnist.train.images[0])

#打印训练样例的标签
print("Example training data label:", mnist.train.labels[0])

Training data size: 55000
Validating data size: 5000
Testing data size: 10000
Example training data [ 0.     ... 0.    ]
Example training data label: 7

处理后的每一张图片是一个长度为784(28*28)的一维数组,数组中的数据为图片的像素,像素元素取值范围为0-1,代表了颜色的深浅,其中0为白色,1为黑色。为了可以使用随机梯度下降,input_data.read_data_sets生成的类还提供了mnist.train.next_batch,可以从素有的训练数据中读取一小部分作为一个训练batch,例如:

batch_size = 200
xs, ys = mnist.train.next_batch(batch_size) #xs是数据,ys是对应的标签
print("X shape", xs.shape)
print("Y shape", ys.shape)

X shape (200, 784) #X是200*784的数组
Y shape (200,) #Y是200维的一维数组

以上这篇使用TensorFlow直接获取处理MNIST数据方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:基于Tensorflow:CPU性能分析
下一篇:python sorted函数原理解析及练习
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。