脚本专栏 
首页 > 脚本专栏 > 浏览文章

python yield和Generator函数用法详解

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

这篇文章主要介绍了python yield和Generator函数用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

首先我们从一个小程序导入,各定一个list,找出其中的素数,我们会这样写

import math
def is_Prims(number):

  if number == 2:
    return True
  //除2以外的所有偶数都不是素数
  elif number % 2 == 0:
    return False
  //如果一个数能被除1和本身之外的数整除,则为合数。其实我们的判定范围到根号n就可以
  for cur in range(2,int(math.sqrt(number))+1,2):
    if number % cur == 0:
      return False
    else:
      return True

def get_Prims(input_list):

  result_list = list()
  for element in input_list:
    if is_Prims(element):
      result_list.append(element)
  return result_list

aa = get_Prims([1,2,3,4,5,6,7,8,9])
print (aa)

但如果我们想给定一个数,然后列出比这个数大的所有素数呢?我们可能这样写:

def get_Prims(number):
  if is_Prims(number):
    return number

但是一旦return函数将控制权交给调用者后彻底结束,任何局部变量和函数工作都被丢弃,下一次调用又会从头开始。因此我们就可以用一下写法:

def get_Prims(number):
  while(True):
    if is_Prims(number):
      yield number
    number += 1

def get_numbers():
  total = list()
  for next_prim in get_Prims(2):
    if next_prim < 100:
      total.append(next_prim)
    else:
      print(total)
      return

get_numbers()

下面解释一下generator函数,一个函数的def代码里包含了yield,函数就自动成为了一个generator函数(及时仍包含有return),generator函数创建generator(一种特殊形式的迭代器,这个迭代器有一个内置__next__()方法),当需要一个值的时候通过yield来产生而不是直接return,因此与一般函数不同的是,此时控制权并未交出。

for循环会隐式的调用next()函数,next()函数负责调用generator中的__next__()方法,此时generator负责返回一个值给任何调用next()的方法,利用yield将此值传回去,相当于return语句。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:python pprint模块中print()和pprint()两者的区别
下一篇:Tensorflow 卷积的梯度反向传播过程
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。