脚本专栏 
首页 > 脚本专栏 > 浏览文章

解决Keras 与 Tensorflow 版本之间的兼容性问题

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

在利用Keras进行实验的时候,后端为Tensorflow,出现了以下问题:

1. 服务器端激活Anaconda环境跑程序时,实验结果很差。

环境:tensorflow 1.4.0,keras 2.1.5

2. 服务器端未激活Anaconda环境跑程序时,实验结果回到正常值。

环境:tensorflow 1.7.0,keras 2.0.8

3. 自己PC端跑相同程序时,实验结果回到正常值。

环境:tensorflow 1.6.0,keras 2.1.5

怀疑实验结果的异常性是由于Keras和Tensorflow版本之间的兼容性导致的。查阅网上资料,借鉴他人的经验,将服务器端的Anaconda环境配置为:tensorflow 1.4.0,keras 2.0.8,实验结果恢复了正常。

这里贴出参考的Keras和Tensorflow版本之间兼容性的链接,供参考:https://docs.floydhub.com/guides/environments/。

在配置环境和调用库的时候,需要注意库之间、与环境之间版本与API的兼容性。特别地,cuda版本、cudnn版本、tensorflow版本等。

以上这篇解决Keras 与 Tensorflow 版本之间的兼容性问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:python连接打印机实现打印文档、图片、pdf文件等功能
下一篇:tensorflow2.0与tensorflow1.0的性能区别介绍
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。