脚本专栏 
首页 > 脚本专栏 > 浏览文章

Tensorflow累加的实现案例

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

由于python内部的变量其实都是reference,而Tensorflow实现的时候也没有意义去判断输出是否是同一变量名,从而判定是否要新建一个Tensor用于输出。Tensorflow为了满足所有需求,定义了两个不同的函数:tf.add和tf.assign_add。从名字即可看出区别,累加应该使用tf.assign_add。同理的还有tf.assign_sub和tf.assign。

具体地,笔者需要一个iteration counter类似的变量,即每次使用一个batch更新参数之后都使得该变量加一,进而控制learning rate等参数来调节学习过程。

最初的实现如下:

a = tf.Variable(tf.zeros(1))
a = tf.add(a,tf.ones(1))

sess = tf.Session()
sess.run(tf.global_variable_initializer())
for i in range(1000):
  print(sess.run(a))

那因为第一行代码输出的a和第二行代码输出的a,虽然变量名相同,但是实质指向的变量以及空间都不同,每次输出的都是1。

更改后的代码则是如下:

a = tf.Variable(tf.zeros(1))
a = tf.assign_add(a,tf.ones(1))

sess = tf.Session()
sess.run(tf.global_variable_initializer())
for i in range(1000):
  print(sess.run(a))

以上这篇Tensorflow累加的实现案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Tensorflow矩阵运算实例(矩阵相乘,点乘,行/列累加)
下一篇:详谈tensorflow gfile文件的用法
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。