脚本专栏 
首页 > 脚本专栏 > 浏览文章

有关Tensorflow梯度下降常用的优化方法分享

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

1.tf.train.exponential_decay() 指数衰减学习率:

#tf.train.exponential_decay(learning_rate, global_steps, decay_steps, decay_rate, staircase=True/False):
#指数衰减学习率
#learning_rate-学习率
#global_steps-训练轮数
#decay_steps-完整的使用一遍训练数据所需的迭代轮数;=总训练样本数/batch
#decay_rate-衰减速度
#staircase-衰减方式;=True,那就表明每decay_steps次计算学习速率变化,更新原始学习速率;=alse,那就是每一步都更新学习速率。learning_rate = tf.train.exponential_decay(
initial_learning_rate = 0.001
global_step = tf.Variable(0, trainable=False)
decay_steps = 100
decay_rate = 0.95
total_loss = slim.losses.get_total_loss()
learning_rate = tf.train.exponential_decay(initial_learning_rate, global_step, decay_steps, decay_rate, True, name='learning_rate')
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss, global_step)

2.tf.train.ExponentialMovingAverage(decay, steps) 滑动平均更新参数:

initial_learning_rate = 0.001
global_step = tf.Variable(0, trainable=False)
decay_steps = 100
decay_rate = 0.95
total_loss = slim.losses.get_total_loss()
learning_rate = tf.train.exponential_decay(initial_learning_rate, global_step, decay_steps, decay_rate, True, name='learning_rate')
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss, global_step)
ema = tf.train.ExponentialMovingAverage(decay=0.9999)
#tf.trainable_variables--返回的是需要训练的变量列表
averages_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([optimizer]):
   train_op = tf.group(averages_op)

以上这篇有关Tensorflow梯度下降常用的优化方法分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:关于windows下Tensorflow和pytorch安装教程
下一篇:django3.02模板中的超链接配置实例代码
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。