脚本专栏 
首页 > 脚本专栏 > 浏览文章

TensorFlow基本的常量、变量和运算操作详解

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

简介

深度学习需要熟悉使用一个框架,本人选择了TensorFlow,一边学习一边做项目,下面简要介绍TensorFlow中的基本常量、变量和运算操作,参考斯坦福大学的cs20si和TensorFlow官网API。

常量

tf.constant()

tf.constant(value, dtype=None, shape=None, name='Const', verify_shape=False),value为值,dtype类型,shape为张量形状,name名称、verify_shape默认False,这些项可选。作用创建一个常量。

a = tf.constant(2, name="a") # print(a) = 2
b = tf.constant(2.0, dtype=tf.float32, shape=[2,2], name="b") # 2x2矩阵,值为2
c = tf.constant([[1, 2], [3, 4]], name="c") # 2x2矩阵,值1,2,3,4

tf.zeros()和tf.zeros_like()

tf.zeros(shape, dtype=tf.float32, name=None), shape为张量形状,dtype类型,name名称。创建一个值为0的常量。

a = tf.zeros(shape=[2, 3], dtype=tf.int32, name='a') # 2x3矩阵,值为0, a = [[0, 0, 0], [0, 0, 0]]

tf.zeros_like(input_tensor, dtype=None, name=None, optimize=True),input_tensor为张量,dtype类型,name名称,optimize优化。根据输入张量创建一个值为0的张量,形状和输入张量相同。

input_tensor = tf.constant([[1,2], [3,4], [5,6])
a = tf.zeros_like(input_tensor) # a = [[0, 0], [0, 0], [0, 0]]

tf.ones()和tf.ones_like()

tf.ones(shape, dtype=tf.float32, name=None),与tf.zeros()类似。

tf.ones_like(input_tensor, dtype=None, name=None, optimize=True),与tf.zeros_like()类似。

tf.fill()

tf.fill(dims, value, name=None), dims为张量形状,同上述shape,vlaue值,name名称。作用是产生一个张量,用一个具体值充满张量。

a = tf.fill([2,3], 8) # 2x3矩阵,值为8

tf.linspace()

tf.linspace(start, stop, num, name=None),start初始值,stop结束值,num数量,name名称。作用是产生一个等差数列一维向量,个数是num,初始值start、结束值stop。

a = tf.linspace(10.0, 13.0, 4) # a = [10.0 11.0 12.0 13.0]

tf.range()

tf.range(start=0, limit=None, delta=1, dtype=None, name='range'),start初始值,limit限制,delta增量,dtype类型,name名称。作用是产生一个等差数列的一维向量,初始值start,公差delta,结束值小于limit。

a = tf.range(start, limit, delta) # a = [3, 6, 9, 12, 15]
b = tf.range(5) # b = [0, 1, 2, 3, 4]

tf.random_normal()

tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None), shape张量形状,mean均值,stddev标准差,dtype类型,seed随机种子,name名称。作用是产生一个正太分布分布,均值为mean,标准差为stddev。

tf.truncated_normal()

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None,name=None),shape张量形状,mean均值,stddev标准差,dtype类型,seed随机种子,name名称。作用是产生一个截断的正太分布,形状为shape,均值为mean,标准差为stddev。

tf.random_uniform()

tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None,name=None),shape张量形状,minval最小值,maxval最大值,dtype类型,seed随机种子,name名称。作用是产生一个均匀分布,形状为shape,最小值为minval,最大值为maxval。

tf.random_shuffle()

tf.random_shuffle(value, seed=None, name=None),value张量,seed随机种子,name名称。作用是将张量value里面的值随机打乱。

a = tf.constant([[1,2],[3,4]],name='a')
b = tf.random_shuffle(a, name='b') # b = [[2,3], [1,4]]

tf.random_crop()

tf.random_crop(value, size, seed=None, name=None),value张量,size大小,seed随机种子,name名称。作用是将张量value随机裁剪成size形状大小的张量,value形状大小>=size。

tf.multinomial()

tf.multinomial(logits, num_samples, seed=None, name=None), logits张量,num_samples采样输出,seed随机种子,name名称。作用是根据概率分布的大小,随机返回对应维度的下标序号。

a = tf.constant([[1, 2, 3, 4, 1], [3, 2, 3, 4, 3]], name='a')
b = tf.multinomial(a, 1, name='b') # b = [0, 0]或者[0, 2]或者[4, 4] 

tf.random_gamma()

tf.random_gamma(shape, alpha, beta=None, dtype=tf.float32, seed=None, name=None)。作用是产生一个Gamma分布。

变量

tf.Variable()

tf.Variable(<initial-value>, name=<optional-name>),变量可以根据直接赋值,如a、b、c,也可以根据构造函数赋值,如W、Z。

a = tf.Variable(2, name="scalar")
b = tf.Variable([2, 3], name="vector")
c = tf.Variable([[0, 1], [2, 3]], name="matrix")
W = tf.Variable(tf.zeros([784,10]), name="weights")
Z = tf.Variable(tf.random_normal([784, 10], mean=0, stddev=0.01), name="Z"

tf.Variable().initializer

1.全局变量初始化

init = tf.global_variables_initializer()
with tf.Session() as sess:
 sess.run(init)

2.指定变量初始化

W = tf.Variable(tf.truncated_normal([700, 10]))
with tf.Session() as sess:
 sess.run(W.initializer)
 print(W) # Tensor("Variable/read:0", shape=(700, 10), dtype=float32)

tf.Variable().eval()

返回变量值。

W = tf.Variable(tf.truncated_normal([700, 10]))
with tf.Session() as sess:
 sess.run(W.initializer) 
 print(W.eval())
 [[-0.76781619 -0.67020458 1.15333688 ..., -0.98434633 -1.25692499 -0.90904623]
 [-0.36763489 -0.65037876 -1.52936983 ..., 0.19320194 -0.38379928
 0.44387451]
 [ 0.12510735 -0.82649058 0.4321366 ..., -0.3816964 0.70466036
 1.33211911]
 ...,
 [ 0.9203397 -0.99590844 0.76853162 ..., -0.74290705 0.37568584
 0.64072722]
 [-0.12753558 0.52571583 1.03265858 ..., 0.59978199 -0.91293705
 -0.02646019]
 [ 0.19076447 -0.62968266 -1.97970271 ..., -1.48389161 0.68170643

tf.Variable.assign()

直接调用assign()并不起作用,它是一个操作,需要sess.run()操作才能起效果。

W = tf.Variable(10)
W.assign(100)
with tf.Session() as sess:
 sess.run(W.initializer)
 print(W.eval()) #  10
W = tf.Variable(10)
assign_op = W.assign(100)
with tf.Session() as sess:
 # sess.run(W.initializer) # 当变量有值的话,可以省略,不需要初始化
 sess.run(assign_op)
print W.eval() #  100

运算操作

运算操作图

TensorFlow基本的常量、变量和运算操作详解

tf.multiply()和tf.matmul()

tf.multiply(x, y, name)作用是x, y逐项相乘。

tf.matmul(x, y, name)作用是x,y矩阵相乘。

a = tf.constant([3, 6])
b = tf.constant([2, 2])
c1 = tf.matmul(a, b) # 报错
c2 = tf.matmul(tf.reshape(a, [1, 2]), tf.reshape(b, [2, 1]))# c2 = [[18]]
c3 = tf.multiply(a, b) # c3 = [6, 12]

加减就不细说了。

结束语

总结了一些常用的常量、变量和操作运算,供大家参考,尤其是对于tensorflow和python不太熟悉的选手有帮助,后续会补充更新,希望大家多多支持。

上一篇:python异常处理try except过程解析
下一篇:利用Python脚本实现自动刷网课
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。