脚本专栏 
首页 > 脚本专栏 > 浏览文章

tensorflow 限制显存大小的实现

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

Python在用GPU跑模型的时候最好开多进程,因为很明显这种任务就是计算密集型的。

用进程池好管理,但是tensorflow默认情况会最大占用显存,尽管该任务并不需要这么多,因此我们可以设置显存的按需获取,这样程序就不会死掉了。

1. 按比例预留:

tf_config = tensorflow.ConfigProto() 
tf_config.gpu_options.per_process_gpu_memory_fraction = 0.5 # 分配50% 
session = tensorflow.Session(config=tf_config) 

2. 或者干脆自适应然后自动增长:

tf_config = tensorflow.ConfigProto() 
tf_config.gpu_options.allow_growth = True # 自适应 
session = tensorflow.Session(config=tf_config) 

以上这篇tensorflow 限制显存大小的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Tensorflow轻松实现XOR运算的方式
下一篇:Tensorflow不支持AVX2指令集的解决方法
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。