脚本专栏 
首页 > 脚本专栏 > 浏览文章

keras获得某一层或者某层权重的输出实例

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

一个例子:

    print("Loading vgg19 weights...")
 
    vgg_model = VGG19(include_top=False, weights='imagenet')
 
    from_vgg = dict()  # 因为模型定义中的layer的名字与原始vgg名字不同,所以需要调整
    from_vgg['conv1_1'] = 'block1_conv1'
    from_vgg['conv1_2'] = 'block1_conv2'
    from_vgg['conv2_1'] = 'block2_conv1'
    from_vgg['conv2_2'] = 'block2_conv2'
    from_vgg['conv3_1'] = 'block3_conv1'
    from_vgg['conv3_2'] = 'block3_conv2'
    from_vgg['conv3_3'] = 'block3_conv3'
    from_vgg['conv3_4'] = 'block3_conv4'
    from_vgg['conv4_1'] = 'block4_conv1'
    from_vgg['conv4_2'] = 'block4_conv2'
 
    for layer in model.layers:
      if layer.name in from_vgg:
        vgg_layer_name = from_vgg[layer.name]
        layer.set_weights(vgg_model.get_layer(vgg_layer_name).get_weights())
        print("Loaded VGG19 layer: " + vgg_layer_name)
densenet.load_weights('model/densenet_weight/densenet_bottom.h5')
# densenet.save_weights('densenet_bottom.h5')
 
# print(densenet.weights)# 获得模型所有权值
t=densenet.get_layer('densenet_conv1/bn')
print(t)
print(densenet.get_weights()[2])

以上这篇keras获得某一层或者某层权重的输出实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:tensorflow获取预训练模型某层参数并赋值到当前网络指定层方式
下一篇:浅谈keras的深度模型训练过程及结果记录方式
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。