脚本专栏 
首页 > 脚本专栏 > 浏览文章

python opencv根据颜色进行目标检测的方法示例

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

颜色目标检测就是根据物体的颜色快速进行目标定位。使用cv2.inRange函数设定合适的阈值,即可以选出合适的目标。

建立项目colordetect.py,代码如下:

#! /usr/bin/env python
# -*- coding: utf-8 -*-

import numpy as np
import cv2

def colorDetect():
 image = cv2.imread('./1.png')
 # 使用RGB颜色空间检测红 蓝 黄 灰,设置合适的阈值
 boundaries = [
 ([17, 15, 100], [50, 56, 200]),
 ([86, 31, 4], [220, 88, 50]),
 ([25, 146, 190], [62, 174, 250]),
 ([103, 86, 65], [145, 133, 128])
 ]

 for lower, upper in boundaries:
 lower = np.array(lower, dtype='uint8')
 upper = np.array(upper, dtype='uint8')
 # 低于lower和高于upper的像素为黑色,lower-upper之间的像素为白色
 mask = cv2.inRange(image, lower, upper)
 # 利用蒙版,进行图像的逻辑与运算
 output = cv2.bitwise_and(image, image, mask=mask)

 cv2.imshow('image', np.hstack([image, output]))
 cv2.waitKey(0)
 cv2.destroyAllWindows()

def main():
 colorDetect()

if __name__ == "__main__":
 main()

定义RGB颜色列表:

boundaries = [
 ([17, 15, 100], [50, 56, 200]),
 ([86, 31, 4], [220, 88, 50]),
 ([25, 146, 190], [62, 174, 250]),
 ([103, 86, 65], [145, 133, 128])
]

该部分([17, 15, 100], [50, 56, 200]),表示图像像素R>=100, B>=15, G>=15和R<=200, B<=56, G<=50的像素将视为红色。

执行代码,结果如下:

python opencv根据颜色进行目标检测的方法示例

总结

要检测图像中颜色,第一件事要做的就是定义像素值的上限和下限。不同的颜色空间具有不同上下限值,定义了上限和下限后,就可以调用cv2.inRange方法返回一个mask,将该mask与图像进行逻辑与bitwise_and就可以得到该图像。

参考资料
https://www.pyimagesearch.com

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:浅谈pytorch、cuda、python的版本对齐问题
下一篇:pytorch模型预测结果与ndarray互转方式
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。