脚本专栏 
首页 > 脚本专栏 > 浏览文章

pytorch 实现将自己的图片数据处理成可以训练的图片类型

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

为了使用自己的图像数据,需要仿照pytorch数据输入创建新的类,其中数据格式为numpy.ndarray。

将自己的图片保存到numpy.ndarray中,然后创建类

from torch.utils.data import Dataset
import numpy as np
 
 
class Dataset(Dataset):
  def __init__(self, path_img, path_target, transforms=None):
    self.train = path_img
    self.targets = path_target
    self.transforms = transforms
 
  def __len__(self):
    return len(self.train)
 
  def __getitem__(self, idx):
    img = self.train[idx]
    target = self.targets[idx]
 
    if self.transforms:
      img = self.transforms(img)
      target = self.transforms(target)
 
    return img, target

使用方法和Mnist数据一样的使用方法

isbi = Dataset(imgs_train, imgs_mask_train,
            transforms=transform)
dataload=torch.utils.data.DataLoader(isbi,batch_size=4,shuffle=True)
for i, data in enumerate(dataload, 1):
  img,label=data
  print img.shape
  print img.shape
  print 10*'*'

以上这篇pytorch 实现将自己的图片数据处理成可以训练的图片类型就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:使用PyTorch训练一个图像分类器实例
下一篇:pytorch下大型数据集(大型图片)的导入方式
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。