脚本专栏 
首页 > 脚本专栏 > 浏览文章

如何基于Python实现自动扫雷

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

这篇文章主要介绍了如何基于Python实现自动扫雷,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

如何基于Python实现自动扫雷

自动扫雷一般分为两种,一种是读取内存数据,而另一种是通过分析图片获得数据,并通过模拟鼠标操作,这里我用的是第二种方式。

一、准备工作

我的版本是 python 3.6.1

python的第三方库:

  • win32api
  • win32gui
  • win32con
  • Pillow
  • numpy
  • opencv

可通过 pip install --upgrade SomePackage 来进行安装

注意:有的版本是下载pywin32,但是有的要把pywin32升级到最高并自动下载了pypiwin32,具体情况每个python版本可能都略有不同

我给出我的第三方库和版本仅供参考

二、关键代码组成

1.找到游戏窗口与坐标

#扫雷游戏窗口
class_name = "TMain"
title_name = "Minesweeper Arbiter "
hwnd = win32gui.FindWindow(class_name, title_name)

#窗口坐标
left = 0
top = 0
right = 0
bottom = 0

if hwnd:
  print("找到窗口")
  left, top, right, bottom = win32gui.GetWindowRect(hwnd)
  #win32gui.SetForegroundWindow(hwnd)
  print("窗口坐标:")
  print(str(left)+' '+str(right)+' '+str(top)+' '+str(bottom))
else:
  print("未找到窗口")

2.锁定并抓取雷区图像

#锁定雷区坐标
#去除周围功能按钮以及多余的界面
#具体的像素值是通过QQ的截图来判断的
left += 15
top += 101
right -= 15
bottom -= 42

#抓取雷区图像
rect = (left, top, right, bottom)
img = ImageGrab.grab().crop(rect)

3.各图像的RGBA值

#数字1-8 周围雷数
#0 未被打开
#ed 被打开 空白
#hongqi 红旗
#boom 普通雷
#boom_red 踩中的雷
rgba_ed = [(225, (192, 192, 192)), (31, (128, 128, 128))]
rgba_hongqi = [(54, (255, 255, 255)), (17, (255, 0, 0)), (109, (192, 192, 192)), (54, (128, 128, 128)), (22, (0, 0, 0))]
rgba_0 = [(54, (255, 255, 255)), (148, (192, 192, 192)), (54, (128, 128, 128))]
rgba_1 = [(185, (192, 192, 192)), (31, (128, 128, 128)), (40, (0, 0, 255))]
rgba_2 = [(160, (192, 192, 192)), (31, (128, 128, 128)), (65, (0, 128, 0))]
rgba_3 = [(62, (255, 0, 0)), (163, (192, 192, 192)), (31, (128, 128, 128))]
rgba_4 = [(169, (192, 192, 192)), (31, (128, 128, 128)), (56, (0, 0, 128))]
rgba_5 = [(70, (128, 0, 0)), (155, (192, 192, 192)), (31, (128, 128, 128))]
rgba_6 = [(153, (192, 192, 192)), (31, (128, 128, 128)), (72, (0, 128, 128))]
rgba_8 = [(149, (192, 192, 192)), (107, (128, 128, 128))]
rgba_boom = [(4, (255, 255, 255)), (144, (192, 192, 192)), (31, (128, 128, 128)), (77, (0, 0, 0))]
rgba_boom_red = [(4, (255, 255, 255)), (144, (255, 0, 0)), (31, (128, 128, 128)), (77, (0, 0, 0))]

4.扫描雷区图像保存至一个二维数组map

#扫描雷区图像
def showmap():
  img = ImageGrab.grab().crop(rect)
  for y in range(blocks_y):
    for x in range(blocks_x):
      this_image = img.crop((x * block_width, y * block_height, (x + 1) * block_width, (y + 1) * block_height))
      if this_image.getcolors() == rgba_0:
        map[y][x] = 0
      elif this_image.getcolors() == rgba_1:
        map[y][x] = 1
      elif this_image.getcolors() == rgba_2:
        map[y][x] = 2
      elif this_image.getcolors() == rgba_3:
        map[y][x] = 3
      elif this_image.getcolors() == rgba_4:
        map[y][x] = 4
      elif this_image.getcolors() == rgba_5:
        map[y][x] = 5
      elif this_image.getcolors() == rgba_6:
        map[y][x] = 6
      elif this_image.getcolors() == rgba_8:
        map[y][x] = 8
      elif this_image.getcolors() == rgba_ed:
        map[y][x] = -1
      elif this_image.getcolors() == rgba_hongqi:
        map[y][x] = -4
      elif this_image.getcolors() == rgba_boom or this_image.getcolors() == rgba_boom_red:
        global gameover
        gameover = 1
        break
        #sys.exit(0)
      else:
        print("无法识别图像")
        print("坐标")
        print((y,x))
        print("颜色")
        print(this_image.getcolors())
        sys.exit(0)
  #print(map)

5.扫雷算法

这里我采用的最基础的算法

1.首先点出一个点

2.扫描所有数字,如果周围空白+插旗==数字,则空白均有雷,右键点击空白插旗

3.扫描所有数字,如果周围插旗==数字,则空白均没有雷,左键点击空白

4.循环2、3,如果没有符合条件的,则随机点击一个白块

#插旗
def banner():
  showmap()
  for y in range(blocks_y):
    for x in range(blocks_x):
      if 1 <= map[y][x] and map[y][x] <= 5:
        boom_number = map[y][x]
        block_white = 0
        block_qi = 0
        for yy in range(y-1,y+2):
          for xx in range(x-1,x+2):
            if 0 <= yy and 0 <= xx and yy < blocks_y and xx < blocks_x:
              if not (yy == y and xx == x):if map[yy][xx] == 0:
                  block_white += 1
                elif map[yy][xx] == -4:
                  block_qi += 1if boom_number == block_white + block_qi:for yy in range(y - 1, y + 2):
            for xx in range(x - 1, x + 2):
              if 0 <= yy and 0 <= xx and yy < blocks_y and xx < blocks_x:
                if not (yy == y and xx == x):
                  if map[yy][xx] == 0:
                    win32api.SetCursorPos([left+xx*block_width, top+yy*block_height])
                    win32api.mouse_event(win32con.MOUSEEVENTF_RIGHTDOWN, 0, 0, 0, 0)
                    win32api.mouse_event(win32con.MOUSEEVENTF_RIGHTUP, 0, 0, 0, 0)
                    showmap()

#点击白块
def dig():
  showmap()
  iscluck = 0
  for y in range(blocks_y):
    for x in range(blocks_x):
      if 1 <= map[y][x] and map[y][x] <= 5:
        boom_number = map[y][x]
        block_white = 0
        block_qi = 0
        for yy in range(y - 1, y + 2):
          for xx in range(x - 1, x + 2):
            if 0 <= yy and 0 <= xx and yy < blocks_y and xx < blocks_x:
              if not (yy == y and xx == x):
                if map[yy][xx] == 0:
                  block_white += 1
                elif map[yy][xx] == -4:
                  block_qi += 1if boom_number == block_qi and block_white > 0:for yy in range(y - 1, y + 2):
            for xx in range(x - 1, x + 2):
              if 0 <= yy and 0 <= xx and yy < blocks_y and xx < blocks_x:
                if not(yy == y and xx == x):
                  if map[yy][xx] == 0:
                    win32api.SetCursorPos([left + xx * block_width, top + yy * block_height])
                    win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0)
                    win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0)
                    iscluck = 1
  if iscluck == 0:
    luck()

#随机点击
def luck():
  fl = 1
  while(fl):
    random_x = random.randint(0, blocks_x - 1)
    random_y = random.randint(0, blocks_y - 1)
    if(map[random_y][random_x] == 0):
      win32api.SetCursorPos([left + random_x * block_width, top + random_y * block_height])
      win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0)
      win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0)
      fl = 0

def gogo():
  win32api.SetCursorPos([left, top])
  win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0)
  win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0)
  showmap()
  global gameover
  while(1):
    if(gameover == 0):
      banner()
      banner()
      dig()
    else:
      gameover = 0
      win32api.keybd_event(113, 0, 0, 0)
      win32api.SetCursorPos([left, top])
      win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0)
      win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, 0, 0, 0, 0)
      showmap()

这个算法在初级和中级通过率都不错,但是在高级成功率惨不忍睹,主要是没有考虑逻辑组合以及白块是雷的概率问题,可以对这两个点进行改进,提高成功率。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:pytorch中的自定义数据处理详解
下一篇:pytorch 自定义参数不更新方式
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。