脚本专栏 
首页 > 脚本专栏 > 浏览文章

pytorch中的上采样以及各种反操作,求逆操作详解

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

import torch.nn.functional as F

import torch.nn as nn

F.upsample(input, size=None, scale_factor=None,mode='nearest', align_corners=None)

  r"""Upsamples the input to either the given :attr:`size` or the given
  :attr:`scale_factor`
  The algorithm used for upsampling is determined by :attr:`mode`.
  Currently temporal, spatial and volumetric upsampling are supported, i.e.
  expected inputs are 3-D, 4-D or 5-D in shape.
  The input dimensions are interpreted in the form:
  `mini-batch x channels x [optional depth] x [optional height] x width`.
  The modes available for upsampling are: `nearest`, `linear` (3D-only),
  `bilinear` (4D-only), `trilinear` (5D-only)
  Args:
    input (Tensor): the input tensor
    size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
      output spatial size.
    scale_factor (int): multiplier for spatial size. Has to be an integer.
    mode (string): algorithm used for upsampling:
      'nearest' | 'linear' | 'bilinear' | 'trilinear'. Default: 'nearest'
    align_corners (bool, optional): if True, the corner pixels of the input
      and output tensors are aligned, and thus preserving the values at
      those pixels. This only has effect when :attr:`mode` is `linear`,
      `bilinear`, or `trilinear`. Default: False
  .. warning::
    With ``align_corners = True``, the linearly interpolating modes
    (`linear`, `bilinear`, and `trilinear`) don't proportionally align the
    output and input pixels, and thus the output values can depend on the
    input size. This was the default behavior for these modes up to version
    0.3.1. Since then, the default behavior is ``align_corners = False``.
    See :class:`~torch.nn.Upsample` for concrete examples on how this
    affects the outputs.
  """

nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1)

"""
Parameters: 
  in_channels (int) – Number of channels in the input image
  out_channels (int) – Number of channels produced by the convolution
  kernel_size (int or tuple) – Size of the convolving kernel
  stride (int or tuple, optional) – Stride of the convolution. Default: 1
  padding (int or tuple, optional) – kernel_size - 1 - padding zero-padding will be added to both sides of each dimension in the input. Default: 0
  output_padding (int or tuple, optional) – Additional size added to one side of each dimension in the output shape. Default: 0
  groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
  bias (bool, optional) – If True, adds a learnable bias to the output. Default: True
  dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
"""

计算方式:

pytorch中的上采样以及各种反操作,求逆操作详解

定义:nn.MaxUnpool2d(kernel_size, stride=None, padding=0)

调用:

def forward(self, input, indices, output_size=None):
  return F.max_unpool2d(input, indices, self.kernel_size, self.stride,
             self.padding, output_size)
 
  r"""Computes a partial inverse of :class:`MaxPool2d`.
  :class:`MaxPool2d` is not fully invertible, since the non-maximal values are lost.
  :class:`MaxUnpool2d` takes in as input the output of :class:`MaxPool2d`
  including the indices of the maximal values and computes a partial inverse
  in which all non-maximal values are set to zero.
  .. note:: `MaxPool2d` can map several input sizes to the same output sizes.
       Hence, the inversion process can get ambiguous.
       To accommodate this, you can provide the needed output size
       as an additional argument `output_size` in the forward call.
       See the Inputs and Example below.
  Args:
    kernel_size (int or tuple): Size of the max pooling window.
    stride (int or tuple): Stride of the max pooling window.
      It is set to ``kernel_size`` by default.
    padding (int or tuple): Padding that was added to the input
  Inputs:
    - `input`: the input Tensor to invert
    - `indices`: the indices given out by `MaxPool2d`
    - `output_size` (optional) : a `torch.Size` that specifies the targeted output size
  Shape:
    - Input: :math:`(N, C, H_{in}, W_{in})`
    - Output: :math:`(N, C, H_{out}, W_{out})` where
  计算公式:见下面
  Example: 见下面
  """

pytorch中的上采样以及各种反操作,求逆操作详解

F. max_unpool2d(input, indices, kernel_size, stride=None, padding=0, output_size=None)

见上面的用法一致!

def max_unpool2d(input, indices, kernel_size, stride=None, padding=0,
         output_size=None):
  r"""Computes a partial inverse of :class:`MaxPool2d`.
  See :class:`~torch.nn.MaxUnpool2d` for details.
  """
  pass

以上这篇pytorch中的上采样以及各种反操作,求逆操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:TensorFlow查看输入节点和输出节点名称方式
下一篇:pytorch 获取tensor维度信息示例
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。