脚本专栏 
首页 > 脚本专栏 > 浏览文章

在Pytorch中计算卷积方法的区别详解(conv2d的区别)

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

在二维矩阵间的运算:

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

对由多个特征平面组成的输入信号进行2D的卷积操作。详解

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

在由多个输入平面组成的输入图像上应用2D卷积,这个操作其实和上面的操作是一样的,只不过这个操作多用于计算一组卷积核对于输入的卷积结果,而上面的那条代码更多的则是用在定义网络中去。详解

以上这篇在Pytorch中计算卷积方法的区别详解(conv2d的区别)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:PyTorch里面的torch.nn.Parameter()详解
下一篇:Python实现银行账户资金交易管理系统
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。