脚本专栏 
首页 > 脚本专栏 > 浏览文章

pytorch: Parameter 的数据结构实例

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

一般来说,pytorch 的Parameter是一个tensor,但是跟通常意义上的tensor有些不一样

1) 通常意义上的tensor 仅仅是数据

2) 而Parameter所对应的tensor 除了包含数据之外,还包含一个属性:requires_grad(=True/False)

在Parameter所对应的tensor中获取纯数据,可以通过以下操作:

param_data = Parameter.data

测试代码:

#-*-coding:utf-8-*-
import torch
import torch.nn as nn
 
## regression for the 3 * 2 affine matrix
fc_loc = nn.Sequential(
  nn.Linear(10 * 3 * 3, 32),
  nn.ReLU(True),
  nn.Linear(32, 3 * 2)
)
 
## initialize the weights/bias with identy transformation
fc_loc[2].weight.data.zero_()
fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
# print(fc_loc)
print(fc_loc[2].weight)
print(fc_loc[2].weight.data)

以上这篇pytorch: Parameter 的数据结构实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:解决Pytorch训练过程中loss不下降的问题
下一篇:Pytorch evaluation每次运行结果不同的解决
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。