脚本专栏 
首页 > 脚本专栏 > 浏览文章

python基于celery实现异步任务周期任务定时任务

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

这篇文章主要介绍了python基于celery实现异步任务周期任务定时任务,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

hello, 小伙伴们, 好久不更新了,这一次带来的是celery在python中的应用以及设置异步任务周期任务和定时任务的步骤,希望能给入坑的你带来些许帮助.

首先是对celery的介绍,Celery其实是一个专注于实时处理和调度任务的分布式任务队列,同时提供操作和维护分布式系统所需要的全部数据, 因此可以用它提供的接口快速实现并管理一个分布式的任务队列,它本身不是任务队列,它是封装了操作常见任务队列的各种操作, 可以使用它快速进行任务队列的使用与管理.在Python中的组成部分是 1.用户任务 app 2.管道 broker 用于存储任务 官方推荐的是 redis rabbitMQ / backend 用于存储任务执行结果的 3, 员工 worker 大致流程入下:

python基于celery实现异步任务周期任务定时任务

最左边的是用户, 用户发起1个请求给服务器, 要服务器执行10个任务,将这10个任务分给10个调度器,即开启10个线程进行任务处理,worker会一直监听调度器是否有任务, 一旦发现有新的任务, 就会立即执行新任务,一旦执行完就会返回给调度器, 即backend, backend会将请求发送给服务器, 服务器将结果返回给用户, 表现的结果就是,这10个任务同时完成,同时返回,,这就是Celery的整个工作流程, 其中的角色分别为,任务(app_work), 调度器(broker + backend), 将任务缓存的部分, 即将所有任务暂时存在的地方,相当于生产者, 消费者(worker 可以指定数量, 即在创建worker命令的时候可以指定数量), 在worker拿到任务后,人就控制不了了, 除非把worker杀死, 不然肯定会执行完.

也即 任务来了以后, 调度器(broker)去缓存任务, worker去执行任务, 完成后返回backend,接着返回,

还有就是关于定时任务和周期任务在linux上为什么不用自身所带着的去做,是因为linux周期定时任务是不可控的, 不好管理, 返回值保存也是个麻烦事, 而celery只要开启着调度器, 就可以随时把人物结果获取到,即使用celery控制起来是非常方便的.

接下来就是实例代码:

workers.py

from celery import Celery
import time
# 创建一个Celery实例, 就是用户的应用app 第一个参数是任务名称, 可以随意起 后面的就是配置的broker和backend
diaoduqi= Celery("mytask", broker="redis://127.0.0.1:6379", backend="redis:127.0.0.1:6379")
# 接下来是为应用创建任务 ab
@diaoduqi.task
def ab(a,b):
  time.sleep(15)
  return a+b

brokers.py

from worker import ab

# 将任务交给Celery的Worker执行
res = ab.delay(2,4)

#返回任务ID
print(res.id)

backends.py

from celery.result import AsyncResult
from worker import diaoduqi

# 异步获取任务返回值
async_task = AsyncResult(id="31ec65e8-3995-4ee1-b3a8-1528400afd5a",app=diaoduqi)

# 判断异步任务是否执行成功
if async_task.successful():
  #获取异步任务的返回值
  result = async_task.get()
  print(result)
else:
  print("任务还未执行完成")

为了方便,现在直接将三个文件代表的部分命名在文件名称中.首先是启动workers.py

启动方式是依据系统的不同来启动的, 对于linux下 celery worker -A workers -l INFO 也可以指定开启的worker数量 即在后面添加的参数是 -c 5 表示指定5个worker 理论上指定的worker是无上限的,

在windows下需要安装一个eventlet模块进行运行, 不然不会运行成功 pip install eventlet 可以开启线程 不指定数量是默认6个worker, 理论上worker的数量可以开启无限个,但是celery worker -A s1 -l INFO -P eventlet -c 5 使用eventlet 开启5个worker 执行

该命令后 处于就绪状态, 需要发布任务, 即brokers.py进行任务发布, 方法是使用delay的方式执行异步任务, 返回了一个任务id, 接着去backends.py中取这个任务id, 去查询任务是否完成,判定条件即任务.successful 判断是否执行完, 上面就是celery异步执行任务的用法与解释

接下来就是celery在项目中的应用

在实际项目中应用celery是有一定规则的, 即目录结构应该如下.

python基于celery实现异步任务周期任务定时任务

结构说明 首先是创建一个CeleryTask的包,接着是在里面创建一个celery.py,必须是这个文件 关于重名的问题, 找寻模块的顺序是先从当前目录中去寻找, 根本找不到,接着是从内置模块中去找, 根本就找不到写的这个celery这个文件,

celery.py

from celery import Celery
DDQ = Celery("DDQ",broker="redis://127.0.0.1:6379",backend="redis://127.0.0.1:6379",
       include=["CeleryTask.TaskOne","CeleryTask.TaskTwo"])

TaskOne.py

import time
from CeleryTask.celery import DDQ
@DDQ.task
def one1(a,b):
  # time.sleep(3)
  return a+b
@DDQ.task
def one2():
  time.sleep(2)
  return "one2"

taskTwo.py

import time
from CeleryTask.celery import DDQ
@DDQ.task
def two1():
  time.sleep(2)
  return "two1"
@DDQ.task
def two2():
  time.sleep(3)
  return "two2"

getR.py

from CeleryTask.TaskOne import one1 as one

# one.delay(10,10)
# two.delay(20,20)

# 定时任务我们不在使用delay这个方法了,delay是立即交给task 去执行
# 现在我们使用apply_async定时执行

# 首先我们要先给task一个执行任务的时间
import datetime, time

# 获取当前时间 此时间为东八区时间
ctime = time.time()
# 将当前的东八区时间改为 UTC时间 注意这里一定是UTC时间,没有其他说法
utc_time = datetime.datetime.utcfromtimestamp(ctime)
# 为当前时间增加 10 秒
add_time = datetime.timedelta(seconds=10)
action_time = utc_time + add_time

# action_time 就是当前时间未来10秒之后的时间
# 现在我们使用apply_async定时执行
res = one.apply_async(args=(6, 10), eta=action_time)
res = one.apply_async(args=(6, 10), eta=action_time)
res = one.apply_async(args=(6, 10), eta=action_time)
res = one.apply_async(args=(6, 10), eta=action_time)
res = one.apply_async(args=(6, 10), eta=action_time)
res = one.apply_async(args=(6, 10), eta=action_time)
print(res.id)
# 这样原本延迟5秒执行的One函数现在就要在10秒钟以后执行了

接着是在命令行cd到与CeleryTask同级目录下, 使用命令 celery worker -A CeleryTask -l INFO -P eventlet -c 50 这样 就开启了worker 接着去 发布任务, 在定时任务中不再使用delay这个方法了,

delay是立即交给ttask去执行, 在这里使用 apply_async定时执行 指的是调度的时候去定时执行

需要设置的是UTC时间, 以及定时的时间(多长时间以后执行) 之后使用 celery worker -A CeleryTask -l INFO -P eventlet -c 50 命令开启worker, 之后运行 getR.py文件发布任务, 可以看到在定义的时间以后执行该任务

周期任务

周期任务 指的是在指定时间去执行任务 需要导入的一个模块有 crontab

文件结构如下

python基于celery实现异步任务周期任务定时任务

结构同定时任务差不多,只不过需要变动一下文件内容 GetR文件已经不需要了,可以删除.

celery.py

from celery import Celery
from celery.schedules import crontab

DDQ = Celery("DDQ", broker="redis://127.0.0.1:6379", backend="redis://127.0.0.1:6379",
       include=["CeleryTask.TaskOne", "CeleryTask.TaskTwo"])

# 我要要对beat任务生产做一个配置,这个配置的意思就是每10秒执行一次Celery_task.task_one任务参数是(10,10)
DDQ.conf.beat_schedule = {
  "each10s_task": {
    "task": "CeleryTask.TaskOne.one1",
    "schedule": 10, # 每10秒钟执行一次
    "args": (10, 10)
  },
  "each1m_task": {
    "task": "CeleryTask.TaskOne.one2",
    "schedule": crontab(minute=1) # 每1分钟执行一次 也可以替换成 60 即 "schedule": 60
  }
}

TaskOne.py

import time
from CeleryTask.celery import DDQ
@DDQ.task
def one1(a,b):
  # time.sleep(3)
  return a+b
@DDQ.task
def one2():
  time.sleep(2)
  return "one2"

taskTwo.py

import time
from CeleryTask.celery import DDQ
@DDQ.task
def two1():
  time.sleep(2)
  return "two1"
@DDQ.task
def two2():
  time.sleep(3)
  return "two2"

以上配置完成以后,这时候就不能直接创建worker了,因为要执行周期任务,需要首先有一个任务的生产方, 即 celery beat -A CeleryTask, 用来产生创建者, 接着是创建worker worker的创建命令还是原来的命令, 即 celery worker -A CeleryTask -l INFO -P eventlet -c 50 , 创建完worker之后, 每10秒就会由beat创建一个任务给 worker去执行.至此, celery创建异步任务, 周期任务,定时任务完毕, 伙伴们自己拿去测试吧.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:pytorch 自定义卷积核进行卷积操作方式
下一篇:PyTorch中反卷积的用法详解
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。