PyTorch中permute的用法详解
(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )
permute(dims)
将tensor的维度换位。
参数:参数是一系列的整数,代表原来张量的维度。比如三维就有0,1,2这些dimension。
例:
import torch import numpy as np a=np.array([[[1,2,3],[4,5,6]]]) unpermuted=torch.tensor(a) print(unpermuted.size()) # ——> torch.Size([1, 2, 3]) permuted=unpermuted.permute(2,0,1) print(permuted.size()) # ——> torch.Size([3, 1, 2])
再比如图片img的size比如是(28,28,3)就可以利用img.permute(2,0,1)得到一个size为(3,28,28)的tensor。
利用这个函数permute(1,3,2)可以把Tensor([[[1,2,3],[4,5,6]]]) 转换成
tensor([[[1., 4.], [2., 5.], [3., 6.]]])
如果使用view(1,3,2),可以得到
tensor([[[1., 2.], [3., 4.], [5., 6.]]])
以上这篇PyTorch中permute的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
下一篇:Python如何基于smtplib发不同格式的邮件