脚本专栏 
首页 > 脚本专栏 > 浏览文章

opencv resize图片为正方形尺寸的实现方法

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

在深度学习中,模型的输入size通常是正方形尺寸的,比如300 x 300这样.直接resize的话,会把图像拉的变形.通常我们希望resize以后仍然保持图片的宽高比.

例如:

opencv resize图片为正方形尺寸的实现方法

如果直接resize到的话:

opencv resize图片为正方形尺寸的实现方法

而我们希望得到:

opencv resize图片为正方形尺寸的实现方法

可以利用copyMakeBorder和resize配合达到我们的目的.

import cv2
def resize_keep_aspectratio(image_src,dst_size):
  src_h,src_w = image_src.shape[:2]
  print(src_h,src_w)
  dst_h,dst_w = dst_size 
  
  #判断应该按哪个边做等比缩放
  h = dst_w * (float(src_h)/src_w)#按照w做等比缩放
  w = dst_h * (float(src_w)/src_h)#按照h做等比缩放
  
  h = int(h)
  w = int(w)
  
  if h <= dst_h:
    image_dst = cv2.resize(image_src,(dst_w,int(h)))
  else:
    image_dst = cv2.resize(image_src,(int(w),dst_h))
  
  h_,w_ = image_dst.shape[:2]
  print(h_,w_)
  
  top = int((dst_h - h_) / 2);
  down = int((dst_h - h_+1) / 2);
  left = int((dst_w - w_) / 2);
  right = int((dst_w - w_+1) / 2);
  
  value = [0,0,0]
  borderType = cv2.BORDER_CONSTANT
  print(top, down, left, right)
  image_dst = cv2.copyMakeBorder(image_dst, top, down, left, right, borderType, None, value)
 
  return image_dst

image_src = cv2.imread("/home/sc/disk/data/bdd-data/bdd_data/bdd100k/images/10k/train/0a0a0b1a-7c39d841.jpg")
dst_size = (720,720)

image = resize_keep_aspectratio(image_src,dst_size)
cv2.imshow("aaa",image)
print(image.shape)
if 27 == cv2.waitKey():
  cv2.destroyAllWindows()

首先判断应该用w,h哪个方向的长度做等比缩放,缩放到合适的尺寸后,在用copyMakeBorder对剩余像素进行填充.深度学习中通常用灰度值128进行边界的填充.以文章开头的图片为例,处理后得到的图片:

opencv resize图片为正方形尺寸的实现方法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:Python实现图片识别加翻译功能
下一篇:opencv之为图像添加边界的方法示例
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。