脚本专栏 
首页 > 脚本专栏 > 浏览文章

python cv2在验证码识别中应用实例解析

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

这篇文章主要介绍了python cv2在验证码识别中应用实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

使用函数cv2.imread(filepath,flags)读入一副图片

filepath:要读入图片的完整路径

flags:读入图片的标志

  • cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道
  • cv2.IMREAD_GRAYSCALE:读入灰度图片
  • cv2.IMREAD_UNCHANGED:顾名思义,读入完整图片,包括alpha通道
  • cv2.cvtColor(p1,p2) 是颜色空间转换函数,p1是需要转换的图片,p2是转换成何种格式。
  • cv2.COLOR_BGR2RGB 将BGR格式转换成RGB格式
  • cv2.COLOR_BGR2GRAY 将BGR格式转换成灰度图片

模版匹配

模板匹配的原理其实很简单,就是不断地在原图中移动模板图像去比较

有6种匹配方法

  • 平方差匹配CV_TM_SQDIFF:用两者的平方差来匹配,最好的匹配值为0
  • 归一化平方差匹配CV_TM_SQDIFF_NORMED
  • 相关匹配CV_TM_CCORR:用两者的乘积匹配,数值越大表明匹配程度越好
  • 归一化相关匹配CV_TM_CCORR_NORMED
  • 相关系数匹配CV_TM_CCOEFF:用两者的相关系数匹配,1表示完美的匹配,-1表示最差的匹配
  • 归一化相关系数匹配CV_TM_CCOEFF_NORMED
  import cv2
  def findpic(self, target='background.png', template='slider.png'):
    """
    :param target: 背景图路径
    :param template: 滑块图片路径
    :return: 
    """
    target_rgb = cv2.imread(target)
    target_gray = cv2.cvtColor(target_rgb, cv2.COLOR_BGR2GRAY)
    template_rgb = cv2.imread(template, 0)
    res = cv2.matchTemplate(target_gray, template_rgb, cv2.TM_CCOEFF_NORMED) #模板匹配,在大图中找小图
    value = cv2.minMaxLoc(res)
    a, b, c, d = value
    if abs(a) >= abs(b):
      distance = c[0]
    else:
      distance = d[0]
    print(value)
    return distance

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:python装饰器的特性原理详解
下一篇:Python将列表中的元素转化为数字并排序的示例
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。