脚本专栏 
首页 > 脚本专栏 > 浏览文章

解决Pytorch 训练与测试时爆显存(out of memory)的问题

(编辑:jimmy 日期: 2025/1/21 浏览:3 次 )

Pytorch 训练时有时候会因为加载的东西过多而爆显存,有些时候这种情况还可以使用cuda的清理技术进行修整,当然如果模型实在太大,那也没办法。

使用torch.cuda.empty_cache()删除一些不需要的变量代码示例如下:

try:
  output = model(input)
except RuntimeError as exception:
  if "out of memory" in str(exception):
    print("WARNING: out of memory")
    if hasattr(torch.cuda, 'empty_cache'):
      torch.cuda.empty_cache()
  else:
    raise exception

测试的时候爆显存有可能是忘记设置no_grad, 示例代码如下:

  with torch.no_grad():
    for ii,(inputs,filelist) in tqdm(enumerate(test_loader), desc='predict'):
      if opt.use_gpu:
        inputs = inputs.cuda()
        if len(inputs.shape) < 4:
          inputs = inputs.unsqueeze(1)
 
      else:
        if len(inputs.shape) < 4:
          inputs = torch.transpose(inputs, 1, 2)
          inputs = inputs.unsqueeze(1)
 

以上这篇解决Pytorch 训练与测试时爆显存(out of memory)的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:python数据类型之间怎么转换技巧分享
下一篇:python并发编程多进程之守护进程原理解析
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?