脚本专栏 
首页 > 脚本专栏 > 浏览文章

详解pandas数据合并与重塑(pd.concat篇)

(编辑:jimmy 日期: 2025/1/21 浏览:3 次 )

1 concat

concat函数是在pandas底下的方法,可以将数据根据不同的轴作简单的融合

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
    keys=None, levels=None, names=None, verify_integrity=False)

参数说明 

  • objs: series,dataframe或者是panel构成的序列lsit 
  • axis: 需要合并链接的轴,0是行,1是列 
  • join:连接的方式 inner,或者outer

其他一些参数不常用,用的时候再补上说明。

1.1 相同字段的表首尾相接

详解pandas数据合并与重塑(pd.concat篇)

# 现将表构成list,然后在作为concat的输入
In [4]: frames = [df1, df2, df3]
 
In [5]: result = pd.concat(frames)

要在相接的时候在加上一个层次的key来识别数据源自于哪张表,可以增加key参数

In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])

效果如下

详解pandas数据合并与重塑(pd.concat篇)

1.2 横向表拼接(行对齐)

1.2.1 axis

当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并

In [9]: result = pd.concat([df1, df4], axis=1)

详解pandas数据合并与重塑(pd.concat篇)

1.2.2 join

加上join参数的属性,如果为'inner'得到的是两表的交集,如果是outer,得到的是两表的并集。

In [10]: result = pd.concat([df1, df4], axis=1, join='inner')

详解pandas数据合并与重塑(pd.concat篇)

1.2.3 join_axes

如果有join_axes的参数传入,可以指定根据那个轴来对齐数据 

例如根据df1表对齐数据,就会保留指定的df1表的轴,然后将df4的表与之拼接

In [11]: result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])

详解pandas数据合并与重塑(pd.concat篇)

1.3 append

append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)

In [12]: result = df1.append(df2)

详解pandas数据合并与重塑(pd.concat篇)

1.4 无视index的concat

如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。 

详解pandas数据合并与重塑(pd.concat篇)

1.5 合并的同时增加区分数据组的键

前面提到的keys参数可以用来给合并后的表增加key来区分不同的表数据来源

1.5.1 可以直接用key参数实现

In [27]: result = pd.concat(frames, keys=['x', 'y', 'z'])

详解pandas数据合并与重塑(pd.concat篇)

1.5.2 传入字典来增加分组键

In [28]: pieces = {'x': df1, 'y': df2, 'z': df3}
In [29]: result = pd.concat(pieces)

详解pandas数据合并与重塑(pd.concat篇)

1.6 在dataframe中加入新的行

append方法可以将 series 和 字典就够的数据作为dataframe的新一行插入。 

详解pandas数据合并与重塑(pd.concat篇)

In [34]: s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])
 
In [35]: result = df1.append(s2, ignore_index=True)

表格列字段不同的表合并

如果遇到两张表的列字段本来就不一样,但又想将两个表合并,其中无效的值用nan来表示。那么可以使用ignore_index来实现。

详解pandas数据合并与重塑(pd.concat篇)

In [36]: dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4},
  ....:     {'A': 5, 'B': 6, 'C': 7, 'Y': 8}]
  ....: 
 
In [37]: result = df1.append(dicts, ignore_index=True)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:Python绘制堆叠柱状图的实例
下一篇:python3 线性回归验证方法
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?