脚本专栏 
首页 > 脚本专栏 > 浏览文章

pandas分区间,算频率的实例

(编辑:jimmy 日期: 2025/1/21 浏览:3 次 )

如下所示:

import pandas as pd
path='F:/python/python数据分析与挖掘实战/图书配套数据、代码/chapter3/demo/data/catering_fish_congee.xls'
data=pd.read_excel(path,header=None,index_col=0)
data.index.name='日期'
data.columns=['销售额(元)']
 
xse=data['销售额(元)']
print(xse.max())
print(xse.min())
print(xse.max()-xse.min())
 
fanwei=list(range(0,4500,500))
fenzu=pd.cut(xse.values,fanwei,right=False)#分组区间,长度91
print(fenzu.codes)#标签
print(fenzu.categories)#分组区间,长度8
pinshu=fenzu.value_counts()#series,区间-个数
print(pinshu.index)
 
import matplotlib.pyplot as plt
pinshu.plot(kind='bar')
#plt.text(0,29,str(29))
 
 
qujian=pd.cut(xse,fanwei,right=False)
data['区间']=qujian.values
data.groupby('区间').median()
data.groupby('区间').mean()#每个区间平均数
 
pinshu_df=pd.DataFrame(pinshu,columns=['频数'])
pinshu_df['频率f']=pinshu_df / pinshu_df['频数'].sum()
pinshu_df['频率%']=pinshu_df['频率f'].map(lambda x:'%.2f%%'%(x*100))
 
pinshu_df['累计频率f']=pinshu_df['频率f'].cumsum()
pinshu_df['累计频率%']=pinshu_df['累计频率f'].map(lambda x:'%.4f%%'%(x*100))
 
In[158]: pinshu_df
Out[158]: 
       频数    频率f   频率%   累计频率f   累计频率%
[0, 500)   29 0.318681 31.87% 0.318681  31.8681%
[500, 1000)  20 0.219780 21.98% 0.538462  53.8462%
[1000, 1500) 12 0.131868 13.19% 0.670330  67.0330%
[1500, 2000) 12 0.131868 13.19% 0.802198  80.2198%
[2000, 2500)  8 0.087912  8.79% 0.890110  89.0110%
[2500, 3000)  3 0.032967  3.30% 0.923077  92.3077%
[3000, 3500)  4 0.043956  4.40% 0.967033  96.7033%
[3500, 4000)  3 0.032967  3.30% 1.000000 100.0000%

pandas分区间,算频率的实例

以上这篇pandas分区间,算频率的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Pycharm简单使用教程(入门小结)
下一篇:pandas基于时间序列的固定时间间隔求均值的方法
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?