详解Numpy中的数组拼接、合并操作(concatenate, append, stack, hstack, vstack, r_, c_等)
Numpy中提供了concatenate,append, stack类(包括hsatck、vstack、dstack、row_stack、column_stack),r_和c_等类和函数用于数组拼接的操作。
各种函数的特点和区别如下标:
concatenate
提供了axis参数,用于指定拼接方向
append
默认先ravel再拼接成一维数组,也可指定axis
stack
提供了axis参数,用于生成新的维度
hstack
水平拼接,沿着行的方向,对列进行拼接
vstack
垂直拼接,沿着列的方向,对行进行拼接
dstack
沿着第三个轴(深度方向)进行拼接
column_stack
水平拼接,沿着行的方向,对列进行拼接
row_stack
垂直拼接,沿着列的方向,对行进行拼接
r_
垂直拼接,沿着列的方向,对行进行拼接
c_
水平拼接,沿着行的方向,对列进行拼接
0. 维度和轴
在正确理解Numpy中的数组拼接、合并操作之前,有必要认识下维度和轴的概念:
ndarray(多维数组)是Numpy处理的数据类型。多维数组的维度即为对应数据所在的空间维度,1维可以理解为直线空间,2维可以理解为平面空间,3维可以理解为立方体空间。
轴是用来对多维数组所在空间进行定义、描述的一组正交化的直线,根据数学惯例可以用
在一维空间中,用一个轴就可以表示清楚,numpy中规定为axis 0,空间内的数可以理解为直线空间上的离散点 (x
在二维空间中,需要用两个轴表示,numpy中规定为axis 0和axis 1,空间内的数可以理解为平面空间上的离散点(x
在三维空间中,需要用三个轴才能表示清楚,在二维空间的基础上numpy中又增加了axis 2,空间内的数可以理解为立方体空间上的离散点(x
Python中可以用numpy中的ndim和shape来分别查看维度,以及在对应维度上的长度。直观上可以根据符号“[ ]”的层数来判断,有m层即为m维,最外面1层对应axis0, 依次为axis1,axis2…
> a = np.array([1,2,3]) > a.ndim # 一维数组 1 > a.shape # 在这个维度上的长度为3 (3,) > b = np.array([[1,2,3], [4,5,6]]) > b.ndim # 二维数组 2 > b.shape # 在axis 0 上的长度为2, 在axis 1上的长度为3.或者可以感性的理解为2行3列 (2, 3) > c = np.array([[[1,2,3], [4,5,6]]]) > c.ndim # 三维数组 3 > c.shape # 在axis 0 上的长度为1,在axis 1上的长度为2, 在axis 2上的长度为3. 或者可以感性的理解为1层2行3列 (1, 2, 3)
1. np.concatenate()
concatenate(a_tuple, axis=0, out=None) """ 参数说明: a_tuple:对需要合并的数组用元组的形式给出 axis: 沿指定的轴进行拼接,默认0,即第一个轴 """
示例
> import numpy as np > ar1 = np.array([[1,2,3], [4,5,6]]) > ar2 = np.array([[7,8,9], [11,12,13]]) > ar1 array([[1, 2, 3], [4, 5, 6]]) > ar2 array([[ 7, 8, 9], [11, 12, 13]]) > np.concatenate((ar1, ar2)) # 这里的第一轴(axis 0)是行方向 array([[ 1, 2, 3], [ 4, 5, 6], [ 7, 8, 9], [11, 12, 13]]) > np.concatenate((ar1, ar2),axis=1) # 这里沿第二个轴,即列方向进行拼接 array([[ 1, 2, 3, 7, 8, 9], [ 4, 5, 6, 11, 12, 13]]) > ar3 = np.array([[14,15,16]]) # shape为(1,3)的2维数组 > np.concatenate((ar1, ar3)) # 一般进行concatenate操作的array的shape需要一致,当然如果array在拼接axis方向的size不一样,也可以完成 > np.concatenate((ar1, ar3)) # ar3虽然在axis0方向的长度不一致,但axis1方向上一致,所以沿axis0可以拼接 array([[ 1, 2, 3], [ 4, 5, 6], [14, 15, 16]]) > np.concatenate((ar1, ar3), axis=1) # ar3和ar1在axis0方向的长度不一致,所以报错
2. pd.append()
append(arr, values, axis=None) """ 参数说明: arr:array_like的数据 values: array_like的数据,若axis为None,则先将arr和values进行ravel扁平化,再拼接;否则values应当与arr的shape一致,或至多 在拼接axis的方向不一致 axis:进行append操作的axis的方向,默认无 """
示例
> np.append(ar1, ar2) # 先ravel扁平化再拼接,所以返回值为一个1维数组 array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13]) > np.append(ar1, ar2, axis=0) # 沿第一个轴拼接,这里为行的方向 array([[ 1, 2, 3], [ 4, 5, 6], [ 7, 8, 9], [11, 12, 13]]) > np.append(ar1, ar2, axis=1) # 沿第二个轴拼接,这里为列的方向 array([[ 1, 2, 3, 7, 8, 9], [ 4, 5, 6, 11, 12, 13]])
3. np.stack()
stack(arrays, axis=0, out=None) """ 沿着指定的axis对arrays(每个array的shape必须一样)进行拼接,返回值的维度比原arrays的维度高1 axis:默认为0,即第一个轴,若为-1即为第二个轴 """
示例
> np.stack((ar1, ar2)) # 增加第一个维度(axis0,之后的axis向后顺延:0—>1, 1—>2) array([[[ 1, 2, 3], [ 4, 5, 6]], [[ 7, 8, 9], [11, 12, 13]]]) > np.stack((ar1, ar2), axis=1) # 增加第二个维度(axis1,之后的axis向后顺延, 1—>2) array([[[ 1, 2, 3], [ 7, 8, 9]], [[ 4, 5, 6], [11, 12, 13]]]) > np.stack((ar1, ar2), axis=2) # 增加第三个维度(axis2,和axis=-1的效果一样,原来的axis0和axis1保持不变) array([[[ 1, 7], [ 2, 8], [ 3, 9]], [[ 4, 11], [ 5, 12], [ 6, 13]]])
关于维度增加的一种理解方式
4. hstack、vstack和vstack
> np.hstack((ar1,ar2)) # 水平拼接,沿着行的方向,对列进行拼接 array([[ 1, 2, 3, 7, 8, 9], [ 4, 5, 6, 11, 12, 13]]) > np.vstack((ar1,ar2)) # 垂直拼接,沿着列的方向,对行进行拼接 array([[ 1, 2, 3], [ 4, 5, 6], [ 7, 8, 9], [11, 12, 13]]) > np.dstack((ar1,ar2)) # 对于2维数组来说,沿着第三轴(深度方向)进行拼接, 效果相当于stack(axis=-1) array([[[ 1, 7], [ 2, 8], [ 3, 9]], [[ 4, 11], [ 5, 12], [ 6, 13]]])
5. column_stack和row_stack
> np.column_stack((ar1,ar2)) # 水平拼接,沿着行的方向,对列进行拼接 array([[ 1, 2, 3, 7, 8, 9], [ 4, 5, 6, 11, 12, 13]]) > np.row_stack((ar1,ar2)) # 垂直拼接,沿着列的方向,对行进行拼接 array([[ 1, 2, 3], [ 4, 5, 6], [ 7, 8, 9], [11, 12, 13]])
6. np.r_ 和np.c_
常用于快速生成ndarray数据
> np.r_[ar1,ar2] # 垂直拼接,沿着列的方向,对行进行拼接 array([[ 1, 2, 3], [ 4, 5, 6], [ 7, 8, 9], [11, 12, 13]]) > np.c_[ar1,ar2] # 水平拼接,沿着行的方向,对列进行拼接 array([[ 1, 2, 3, 7, 8, 9], [ 4, 5, 6, 11, 12, 13]])
7. 总结
对于两个shape一样的二维array来说:
增加行(对行进行拼接)的方法有:
np.concatenate((ar1, ar2),axis=0) np.append(ar1, ar2, axis=0) np.vstack((ar1,ar2)) np.row_stack((ar1,ar2)) np.r_[ar1,ar2]
增加列(对列进行拼接)的方法有:
np.concatenate((ar1, ar2),axis=1) np.append(ar1, ar2, axis=1) np.hstack((ar1,ar2)) np.column_stack((ar1,ar2)) np.c_[ar1,ar2]
相关代码可见:https://github.com/guofei1989/python_func_cases/tree/master/numpy_demos
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
下一篇:python安装numpy和pandas的方法步骤