python实现爬山算法的思路详解
(编辑:jimmy 日期: 2025/1/23 浏览:3 次 )
问题
找图中函数在区间[5,8]的最大值
重点思路
爬山算法会收敛到局部最优,解决办法是初始值在定义域上随机取乱数100次,总不可能100次都那么倒霉。
实现
import numpy as np import matplotlib.pyplot as plt import math # 搜索步长 DELTA = 0.01 # 定义域x从5到8闭区间 BOUND = [5,8] # 随机取乱数100次 GENERATION = 100 def F(x): return math.sin(x*x)+2.0*math.cos(2.0*x) def hillClimbing(x): while F(x+DELTA)>F(x) and x+DELTA<=BOUND[1] and x+DELTA>=BOUND[0]: x = x+DELTA while F(x-DELTA)>F(x) and x-DELTA<=BOUND[1] and x-DELTA>=BOUND[0]: x = x-DELTA return x,F(x) def findMax(): highest = [0,-1000] for i in range(GENERATION): x = np.random.rand()*(BOUND[1]-BOUND[0])+BOUND[0] currentValue = hillClimbing(x) print('current value is :',currentValue) if currentValue[1] > highest[1]: highest[:] = currentValue return highest [x,y] = findMax() print('highest point is x :{},y:{}'.format(x,y))
运行结果:
总结
以上所述是小编给大家介绍的python实现爬山算法的思路详解,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!
下一篇:用Python中的turtle模块画图两只小羊方法