脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python的Tornado框架的异步任务与AsyncHTTPClient

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

高性能服务器Tornado
Python的web框架名目繁多,各有千秋。正如光荣属于希腊,伟大属于罗马。Python的优雅结合WSGI的设计,让web框架接口实现千秋一统。WSGI 把应用(Application)和服务器(Server)结合起来。Django 和 Flask 都可以结合 gunicon 搭建部署应用。

与 django 和 flask 不一样,tornado 既可以是 wsgi 应用,也可以是 wsgi 服务。当然,选择tornado更多的考量源于其单进程单线程异步IO的网络模式。高性能往往吸引人,可是有不少朋友使用之后会提出疑问,tornado号称高性能,实际使用的时候却怎么感受不到呢?

实际上,高性能源于Tornado基于Epoll(unix为kqueue)的异步网络IO。因为tornado的单线程机制,一不小心就容易写出阻塞服务(block)的代码。不但没有性能提高,反而会让性能急剧下降。因此,探索tornado的异步使用方式很有必要。

Tornado 异步使用方式
简而言之,Tornado的异步包括两个方面,异步服务端和异步客户端。无论服务端和客户端,具体的异步模型又可以分为回调(callback)和协程(coroutine)。具体应用场景,也没有很明确的界限。往往一个请求服务里还包含对别的服务的客户端异步请求。

服务端异步方式
服务端异步,可以理解为一个tornado请求之内,需要做一个耗时的任务。直接写在业务逻辑里可能会block整个服务。因此可以把这个任务放到异步处理,实现异步的方式就有两种,一种是yield挂起函数,另外一种就是使用类线程池的方式。请看一个同步例子:

class SyncHandler(tornado.web.RequestHandler):

  def get(self, *args, **kwargs):
    # 耗时的代码
    os.system("ping -c 2 www.google.com")
    self.finish('It works')

使用ab测试一下:

ab -c 5 -n 5 http://127.0.0.1:5000/sync

Server Software:    TornadoServer/4.3
Server Hostname:    127.0.0.1
Server Port:      5000

Document Path:     /sync
Document Length:    5 bytes

Concurrency Level:   5
Time taken for tests:  5.076 seconds
Complete requests:   5
Failed requests:    0
Total transferred:   985 bytes
HTML transferred:    25 bytes
Requests per second:  0.99 [#/sec] (mean)
Time per request:    5076.015 [ms] (mean)
Time per request:    1015.203 [ms] (mean, across all concurrent requests)
Transfer rate:     0.19 [Kbytes/sec] received

qps 仅有可怜的 0.99,姑且当成每秒处理一个请求吧。

下面祭出异步大法:

class AsyncHandler(tornado.web.RequestHandler):
  @tornado.web.asynchronous
  @tornado.gen.coroutine
  def get(self, *args, **kwargs):

    tornado.ioloop.IOLoop.instance().add_timeout(1, callback=functools.partial(self.ping, 'www.google.com'))

    # do something others

    self.finish('It works')

  @tornado.gen.coroutine
  def ping(self, url):
    os.system("ping -c 2 {}".format(url))
    return 'after'

尽管在执行异步任务的时候选择了timeout 1秒,主线程的返回还是很快的。ab压测如下:

Document Path:     /async
Document Length:    5 bytes

Concurrency Level:   5
Time taken for tests:  0.009 seconds
Complete requests:   5
Failed requests:    0
Total transferred:   985 bytes
HTML transferred:    25 bytes
Requests per second:  556.92 [#/sec] (mean)
Time per request:    8.978 [ms] (mean)
Time per request:    1.796 [ms] (mean, across all concurrent requests)
Transfer rate:     107.14 [Kbytes/sec] received

上述的使用方式,通过tornado的IO循环,把可以把耗时的任务放到后台异步计算,请求可以接着做别的计算。可是,经常有一些耗时的任务完成之后,我们需要其计算的结果。此时这种方式就不行了。车道山前必有路,只需要切换一异步方式即可。下面使用协程来改写:

class AsyncTaskHandler(tornado.web.RequestHandler):
  @tornado.web.asynchronous
  @tornado.gen.coroutine
  def get(self, *args, **kwargs):
    # yield 结果
    response = yield tornado.gen.Task(self.ping, ' www.google.com')
    print 'response', response
    self.finish('hello')

  @tornado.gen.coroutine
  def ping(self, url):
    os.system("ping -c 2 {}".format(url))
    return 'after'

可以看到异步在处理,而结果值也被返回了。

Server Software:    TornadoServer/4.3
Server Hostname:    127.0.0.1
Server Port:      5000

Document Path:     /async/task
Document Length:    5 bytes

Concurrency Level:   5
Time taken for tests:  0.049 seconds
Complete requests:   5
Failed requests:    0
Total transferred:   985 bytes
HTML transferred:    25 bytes
Requests per second:  101.39 [#/sec] (mean)
Time per request:    49.314 [ms] (mean)
Time per request:    9.863 [ms] (mean, across all concurrent requests)
Transfer rate:     19.51 [Kbytes/sec] received

qps提升还是很明显的。有时候这种协程处理,未必就比同步快。在并发量很小的情况下,IO本身拉开的差距并不大。甚至协程和同步性能差不多。例如你跟博尔特跑100米肯定输给他,可是如果跟他跑2米,鹿死谁手还未定呢。

yield挂起函数协程,尽管没有block主线程,因为需要处理返回值,挂起到响应执行还是有时间等待,相对于单个请求而言。另外一种使用异步和协程的方式就是在主线程之外,使用线程池,线程池依赖于futures。Python2需要额外安装。

下面使用线程池的方式修改为异步处理:

from concurrent.futures import ThreadPoolExecutor

class FutureHandler(tornado.web.RequestHandler):
  executor = ThreadPoolExecutor(10)

  @tornado.web.asynchronous
  @tornado.gen.coroutine
  def get(self, *args, **kwargs):

    url = 'www.google.com'
    tornado.ioloop.IOLoop.instance().add_callback(functools.partial(self.ping, url))
    self.finish('It works')

  @tornado.concurrent.run_on_executor
  def ping(self, url):
    os.system("ping -c 2 {}".format(url))

再运行ab测试:

Document Path:     /future
Document Length:    5 bytes

Concurrency Level:   5
Time taken for tests:  0.003 seconds
Complete requests:   5
Failed requests:    0
Total transferred:   995 bytes
HTML transferred:    25 bytes
Requests per second:  1912.78 [#/sec] (mean)
Time per request:    2.614 [ms] (mean)
Time per request:    0.523 [ms] (mean, across all concurrent requests)
Transfer rate:     371.72 [Kbytes/sec] received

qps瞬间达到了1912.78。同时,可以看到服务器的log还在不停的输出ping的结果。
想要返回值也很容易。再切换一下使用方式接口。使用tornado的gen模块下的with_timeout功能(这个功能必须在tornado>3.2的版本)。

class Executor(ThreadPoolExecutor):
  _instance = None

  def __new__(cls, *args, **kwargs):
    if not getattr(cls, '_instance', None):
      cls._instance = ThreadPoolExecutor(max_workers=10)
    return cls._instance


class FutureResponseHandler(tornado.web.RequestHandler):
  executor = Executor()

  @tornado.web.asynchronous
  @tornado.gen.coroutine
  def get(self, *args, **kwargs):

    future = Executor().submit(self.ping, 'www.google.com')

    response = yield tornado.gen.with_timeout(datetime.timedelta(10), future,
                         quiet_exceptions=tornado.gen.TimeoutError)

    if response:
      print 'response', response.result()

  @tornado.concurrent.run_on_executor
  def ping(self, url):
    os.system("ping -c 1 {}".format(url))
    return 'after'

线程池的方式也可以通过使用tornado的yield把函数挂起,实现了协程处理。可以得出耗时任务的result,同时不会block住主线程。

Concurrency Level:   5
Time taken for tests:  0.043 seconds
Complete requests:   5
Failed requests:    0
Total transferred:   960 bytes
HTML transferred:    0 bytes
Requests per second:  116.38 [#/sec] (mean)
Time per request:    42.961 [ms] (mean)
Time per request:    8.592 [ms] (mean, across all concurrent requests)
Transfer rate:     21.82 [Kbytes/sec] received

qps为116,使用yield协程的方式,仅为非reponse的十分之一左右。看起来性能损失了很多,主要原因这个协程返回结果需要等执行完毕任务。

好比打鱼,前一种方式是撒网,然后就完事,不闻不问,时间当然快,后一种方式则撒网之后,还得收网,等待收网也是一段时间。当然,相比同步的方式还是快了千百倍,毕竟撒网还是比一只只钓比较快。

具体使用何种方式,更多的依赖业务,不需要返回值的往往需要处理callback,回调太多容易晕菜,当然如果需要很多回调嵌套,首先优化的应该是业务或产品逻辑。yield的方式很优雅,写法可以异步逻辑同步写,爽是爽了,当然也会损失一定的性能。

异步多样化
Tornado异步服务的处理大抵如此。现在异步处理的框架和库也很多,借助redis或者celery等,也可以把tonrado中一些业务异步化,放到后台执行。

此外,Tornado还有客户端异步功能。该特性主要是在于 AsyncHTTPClient的使用。此时的应用场景往往是tornado服务内,需要针对另外的IO进行请求和处理。顺便提及,上述的例子中,调用ping其实也算是一种服务内的IO处理。接下来,将会探索一下AsyncHTTPClient的使用,尤其是使用AsyncHTTPClient上传文件与转发请求。

异步客户端
前面了解Tornado的异步任务的常用做法,姑且归结为异步服务。通常在我们的服务内,还需要异步的请求第三方服务。针对HTTP请求,Python的库Requests是最好用的库,没有之一。官网宣称:HTTP for Human。然而,在tornado中直接使用requests将会是一场恶梦。requests的请求会block整个服务进程。

上帝关上门的时候,往往回打开一扇窗。Tornado提供了一个基于框架本身的异步HTTP客户端(当然也有同步的客户端)--- AsyncHTTPClient。

AsyncHTTPClient 基本用法
AsyncHTTPClient是 tornado.httpclinet 提供的一个异步http客户端。使用也比较简单。与服务进程一样,AsyncHTTPClient也可以callback和yield两种使用方式。前者不会返回结果,后者则会返回response。

如果请求第三方服务是同步方式,同样会杀死性能。

class SyncHandler(tornado.web.RequestHandler):
  def get(self, *args, **kwargs):

    url = 'https://api.github.com/'
    resp = requests.get(url)
    print resp.status_code

    self.finish('It works')

使用ab测试大概如下:

Document Path:     /sync
Document Length:    5 bytes

Concurrency Level:   5
Time taken for tests:  10.255 seconds
Complete requests:   5
Failed requests:    0
Total transferred:   985 bytes
HTML transferred:    25 bytes
Requests per second:  0.49 [#/sec] (mean)
Time per request:    10255.051 [ms] (mean)
Time per request:    2051.010 [ms] (mean, across all concurrent requests)
Transfer rate:     0.09 [Kbytes/sec] received

性能相当慢了,换成AsyncHTTPClient再测:

class AsyncHandler(tornado.web.RequestHandler):
  @tornado.web.asynchronous
  def get(self, *args, **kwargs):

    url = 'https://api.github.com/'
    http_client = tornado.httpclient.AsyncHTTPClient()
    http_client.fetch(url, self.on_response)
    self.finish('It works')

  @tornado.gen.coroutine
  def on_response(self, response):
    print response.code

qps 提高了很多

Document Path:     /async
Document Length:    5 bytes

Concurrency Level:   5
Time taken for tests:  0.162 seconds
Complete requests:   5
Failed requests:    0
Total transferred:   985 bytes
HTML transferred:    25 bytes
Requests per second:  30.92 [#/sec] (mean)
Time per request:    161.714 [ms] (mean)
Time per request:    32.343 [ms] (mean, across all concurrent requests)
Transfer rate:     5.95 [Kbytes/sec] received

同样,为了获取response的结果,只需要yield函数。

class AsyncResponseHandler(tornado.web.RequestHandler):
  @tornado.web.asynchronous
  @tornado.gen.coroutine
  def get(self, *args, **kwargs):

    url = 'https://api.github.com/'
    http_client = tornado.httpclient.AsyncHTTPClient()
    response = yield tornado.gen.Task(http_client.fetch, url)
    print response.code
    print response.body

AsyncHTTPClient 转发
使用Tornado经常需要做一些转发服务,需要借助AsyncHTTPClient。既然是转发,就不可能只有get方法,post,put,delete等方法也会有。此时涉及到一些 headers和body,甚至还有https的waring。

下面请看一个post的例子, yield结果,通常,使用yield的时候,handler是需要 tornado.gen.coroutine。

headers = self.request.headers
body = json.dumps({'name': 'rsj217'})
http_client = tornado.httpclient.AsyncHTTPClient()

resp = yield tornado.gen.Task(
  self.http_client.fetch, 
  url,
  method="POST", 
  headers=headers,
  body=body, 
  validate_cert=False)

AsyncHTTPClient 构造请求
如果业务处理并不是在handlers写的,而是在别的地方,当无法直接使用tornado.gen.coroutine的时候,可以构造请求,使用callback的方式。

body = urllib.urlencode(params)
req = tornado.httpclient.HTTPRequest(
 url=url, 
 method='POST', 
 body=body, 
 validate_cert=False) 

http_client.fetch(req, self.handler_response)

def handler_response(self, response):

  print response.code

用法也比较简单,AsyncHTTPClient中的fetch方法,第一个参数其实是一个HTTPRequest实例对象,因此对于一些和http请求有关的参数,例如method和body,可以使用HTTPRequest先构造一个请求,再扔给fetch方法。通常在转发服务的时候,如果开起了validate_cert,有可能会返回599timeout之类,这是一个warning,官方却认为是合理的。

AsyncHTTPClient 上传图片
AsyncHTTPClient 更高级的用法就是上传图片。例如服务有一个功能就是请求第三方服务的图片OCR服务。需要把用户上传的图片,再转发给第三方服务。

@router.Route('/api/v2/account/upload')
class ApiAccountUploadHandler(helper.BaseHandler):
  @tornado.gen.coroutine
  @helper.token_require
  def post(self, *args, **kwargs):
    upload_type = self.get_argument('type', None)

    files_body = self.request.files['file']

    new_file = 'upload/new_pic.jpg'
    new_file_name = 'new_pic.jpg'

    # 写入文件
    with open(new_file, 'w') as w:
      w.write(file_['body'])

    logging.info('user {} upload {}'.format(user_id, new_file_name))

    # 异步请求 上传图片
    with open(new_file, 'rb') as f:
      files = [('image', new_file_name, f.read())]

    fields = (('api_key', KEY), ('api_secret', SECRET))

    content_type, body = encode_multipart_formdata(fields, files)

    headers = {"Content-Type": content_type, 'content-length': str(len(body))}
    request = tornado.httpclient.HTTPRequest(config.OCR_HOST,
                         method="POST", headers=headers, body=body, validate_cert=False)

    response = yield tornado.httpclient.AsyncHTTPClient().fetch(request)

def encode_multipart_formdata(fields, files):
  """
  fields is a sequence of (name, value) elements for regular form fields.
  files is a sequence of (name, filename, value) elements for data to be
  uploaded as files.
  Return (content_type, body) ready for httplib.HTTP instance
  """
  boundary = '----------ThIs_Is_tHe_bouNdaRY_$'
  crlf = '\r\n'
  l = []
  for (key, value) in fields:
    l.append('--' + boundary)
    l.append('Content-Disposition: form-data; name="%s"' % key)
    l.append('')
    l.append(value)
  for (key, filename, value) in files:
    filename = filename.encode("utf8")
    l.append('--' + boundary)
    l.append(
        'Content-Disposition: form-data; name="%s"; filename="%s"' % (
          key, filename
        )
    )
    l.append('Content-Type: %s' % get_content_type(filename))
    l.append('')
    l.append(value)
  l.append('--' + boundary + '--')
  l.append('')
  body = crlf.join(l)
  content_type = 'multipart/form-data; boundary=%s' % boundary
  return content_type, body


def get_content_type(filename):
  import mimetypes

  return mimetypes.guess_type(filename)[0] or 'application/octet-stream'

对比上述的用法,上传图片仅仅是多了一个图片的编码。将图片的二进制数据按照multipart 方式编码。编码的同时,还需要把传递的相关的字段处理好。相比之下,使用requests 的方式则非常简单:

files = {}
f = open('/Users/ghost/Desktop/id.jpg')
files['image'] = f
data = dict(api_key='KEY', api_secret='SECRET')
resp = requests.post(url, data=data, files=files)
f.close()
print resp.status_Code

总结
通过AsyncHTTPClient的使用方式,可以轻松的实现handler对第三方服务的请求。结合前面关于tornado异步的使用方式。无非还是两个key。是否需要返回结果,来确定使用callback的方式还是yield的方式。当然,如果不同的函数都yield,yield也可以一直传递。这个特性,tornado的中的tornado.auth 里面对oauth的认证。

大致就是这样的用法。

上一篇:结合Python的SimpleHTTPServer源码来解析socket通信
下一篇:Python读写txt文本文件的操作方法全解析
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?