脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python使用gensim计算文档相似性

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

pre_file.py

#-*-coding:utf-8-*-
import MySQLdb
import MySQLdb as mdb
import os,sys,string
import jieba
import codecs
reload(sys)
sys.setdefaultencoding('utf-8')
#连接数据库
try:
  conn=mdb.connect(host='127.0.0.1',user='root',passwd='kongjunli',db='test1',charset='utf8')
except Exception,e:
  print e
  sys.exit()
#获取cursor对象操作数据库
cursor=conn.cursor(mdb.cursors.DictCursor) #cursor游标
#获取内容
sql='SELECT link,content FROM test1.spider;'
cursor.execute(sql)   #execute()方法,将字符串当命令执行
data=cursor.fetchall()#fetchall()接收全部返回结果行
f=codecs.open('C:\Users\kk\Desktop\hello-result1.txt','w','utf-8')
 
for row in data:    #row接收结果行的每行数据
  seg='/'.join(list(jieba.cut(row['content'],cut_all='False')))
  f.write(row['link']+' '+seg+'\r\n')
f.close()
 
cursor.close()
      #提交事务,在插入数据时必须

jiansuo.py

#-*-coding:utf-8-*-
import sys
import string
import MySQLdb
import MySQLdb as mdb
import gensim
from gensim import corpora,models,similarities
from gensim.similarities import MatrixSimilarity
import logging
import codecs
reload(sys)
sys.setdefaultencoding('utf-8')
 
con=mdb.connect(host='127.0.0.1',user='root',passwd='kongjunli',db='test1',charset='utf8')
with con:
  cur=con.cursor()
  cur.execute('SELECT * FROM cutresult_copy')
  rows=cur.fetchall()
  class MyCorpus(object):
    def __iter__(self):
      for row in rows:
        yield str(row[1]).split('/')
#开启日志
logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s',level=logging.INFO)
Corp=MyCorpus()
#将网页文档转化为tf-idf
dictionary=corpora.Dictionary(Corp)
corpus=[dictionary.doc2bow(text) for text in Corp] #将文档转化为词袋模型
#print corpus
tfidf=models.TfidfModel(corpus)#使用tf-idf模型得出文档的tf-idf模型
corpus_tfidf=tfidf[corpus]#计算得出tf-idf值
#for doc in corpus_tfidf:
  #print doc
###
'''
q_file=open('C:\Users\kk\Desktop\q.txt','r')
query=q_file.readline()
q_file.close()
vec_bow=dictionary.doc2bow(query.split(' '))#将请求转化为词带模型
vec_tfidf=tfidf[vec_bow]#计算出请求的tf-idf值
#for t in vec_tfidf:
 # print t
'''
###
query=raw_input('Enter your query:')
vec_bow=dictionary.doc2bow(query.split())
vec_tfidf=tfidf[vec_bow]
index=similarities.MatrixSimilarity(corpus_tfidf)
sims=index[vec_tfidf]
similarity=list(sims)
print sorted(similarity,reverse=True)

encodings.xml

<"1.0" encoding="UTF-8"?>
<project version="4">
 <component name="Encoding">
  <file url="PROJECT" charset="UTF-8" />
 </component>
</project>

misc.xml

<"1.0" encoding="UTF-8"?>
<project version="4">
 <component name="ProjectLevelVcsManager" settingsEditedManually="false">
  <OptionsSetting value="true" id="Add" />
  <OptionsSetting value="true" id="Remove" />
  <OptionsSetting value="true" id="Checkout" />
  <OptionsSetting value="true" id="Update" />
  <OptionsSetting value="true" id="Status" />
  <OptionsSetting value="true" id="Edit" />
  <ConfirmationsSetting value="0" id="Add" />
  <ConfirmationsSetting value="0" id="Remove" />
 </component>
 <component name="ProjectRootManager" version="2" project-jdk-name="Python 2.7.11 (C:\Python27\python.exe)" project-jdk-type="Python SDK" />
</project>

modules.xml

<"1.0" encoding="UTF-8"?>
<project version="4">
 <component name="ProjectModuleManager">
  <modules>
   <module fileurl="file://$PROJECT_DIR$/.idea/爬虫练习代码.iml" filepath="$PROJECT_DIR$/.idea/爬虫练习代码.iml" />
  </modules>
 </component>
</project>

上一篇:python去除文件中空格、Tab及回车的方法
下一篇:Python脚本实现虾米网签到功能
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?