Python的MongoDB模块PyMongo操作方法集锦
(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )
开始之前当然要导入模块啦:
> import pymongo
下一步,必须本地mongodb服务器的安装和启动已经完成,才能继续下去。
建立于MongoClient 的连接:
client = MongoClient('localhost', 27017) # 或者 client = MongoClient('mongodb://localhost:27017/')
得到数据库:
> db = client.test_database # 或者 > db = client['test-database']
得到一个数据集合:
collection = db.test_collection # 或者 collection = db['test-collection']
MongoDB中的数据使用的是类似Json风格的文档:
> import datetime > post = {"author": "Mike", ... "text": "My first blog post!", ... "tags": ["mongodb", "python", "pymongo"], ... "date": datetime.datetime.utcnow()}
插入一个文档:
> posts = db.posts > post_id = posts.insert_one(post).inserted_id > post_id ObjectId('...')
找一条数据:
> posts.find_one() {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']} > posts.find_one({"author": "Mike"}) {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']} > posts.find_one({"author": "Eliot"}) >
通过ObjectId来查找:
> post_id ObjectId(...) > posts.find_one({"_id": post_id}) {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
不要转化ObjectId的类型为String:
> post_id_as_str = str(post_id) > posts.find_one({"_id": post_id_as_str}) # No result >
如果你有一个post_id字符串,怎么办呢?
from bson.objectid import ObjectId # The web framework gets post_id from the URL and passes it as a string def get(post_id): # Convert from string to ObjectId: document = client.db.collection.find_one({'_id': ObjectId(post_id)})
多条插入:
> new_posts = [{"author": "Mike", ... "text": "Another post!", ... "tags": ["bulk", "insert"], ... "date": datetime.datetime(2009, 11, 12, 11, 14)}, ... {"author": "Eliot", ... "title": "MongoDB is fun", ... "text": "and pretty easy too!", ... "date": datetime.datetime(2009, 11, 10, 10, 45)}] > result = posts.insert_many(new_posts) > result.inserted_ids [ObjectId('...'), ObjectId('...')]
查找多条数据:
> for post in posts.find(): ... post ... {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']} {u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']} {u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}
当然也可以约束查找条件:
> for post in posts.find({"author": "Mike"}): ... post ... {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']} {u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
获取集合的数据条数:
> posts.count()
或者说满足某种查找条件的数据条数:
> posts.find({"author": "Mike"}).count()
范围查找,比如说时间范围:
> d = datetime.datetime(2009, 11, 12, 12) > for post in posts.find({"date": {"$lt": d}}).sort("author"): ... print post ... {u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'} {u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
$lt是小于的意思。
如何建立索引呢?比如说下面这个查找:
> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"] u'BasicCursor' > posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]
建立索引:
> from pymongo import ASCENDING, DESCENDING > posts.create_index([("date", DESCENDING), ("author", ASCENDING)]) u'date_-1_author_1' > posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"] u'BtreeCursor date_-1_author_1' > posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]
连接聚集
> account = db.Account #或 > account = db["Account"]
查看全部聚集名称
> db.collection_names()
查看聚集的一条记录
> db.Account.find_one() > db.Account.find_one({"UserName":"keyword"})
查看聚集的字段
> db.Account.find_one({},{"UserName":1,"Email":1}) {u'UserName': u'libing', u'_id': ObjectId('4ded95c3b7780a774a099b7c'), u'Email': u'libing@35.cn'} > db.Account.find_one({},{"UserName":1,"Email":1,"_id":0}) {u'UserName': u'libing', u'Email': u'libing@35.cn'}
查看聚集的多条记录
> for item in db.Account.find(): item > for item in db.Account.find({"UserName":"libing"}): item["UserName"]
查看聚集的记录统计
> db.Account.find().count() > db.Account.find({"UserName":"keyword"}).count()
聚集查询结果排序
> db.Account.find().sort("UserName") #默认为升序 > db.Account.find().sort("UserName",pymongo.ASCENDING) #升序 > db.Account.find().sort("UserName",pymongo.DESCENDING) #降序
聚集查询结果多列排序
> db.Account.find().sort([("UserName",pymongo.ASCENDING),("Email",pymongo.DESCENDING)])
添加记录
> db.Account.insert({"AccountID":21,"UserName":"libing"})
修改记录
> db.Account.update({"UserName":"libing"},{"$set":{"Email":"libing@126.com","Password":"123"}})
删除记录
> db.Account.remove() -- 全部删除 > db.Test.remove({"UserName":"keyword"})
下一篇:使用Python神器对付12306变态验证码