脚本专栏 
首页 > 脚本专栏 > 浏览文章

调试Python程序代码的几种方法总结

(编辑:jimmy 日期: 2024/11/18 浏览:3 次 )

程序能一次写完并正常运行的概率很小,基本不超过1%。总会有各种各样的bug需要修正。有的bug很简单,看看错误信息就知道,有的bug很复杂,我们需要知道出错时,哪些变量的值是正确的,哪些变量的值是错误的,因此,需要一整套调试程序的手段来修复bug。

第一种方法简单直接粗暴有效,就是用print把可能有问题的变量打印出来看看:

# err.py
def foo(s):
  n = int(s)
  print '> n = %d' % n
  return 10 / n

def main():
  foo('0')

main()

执行后在输出中查找打印的变量值:

$ python err.py
> n = 0
Traceback (most recent call last):
 ...
ZeroDivisionError: integer division or modulo by zero

用print最大的坏处是将来还得删掉它,想想程序里到处都是print,运行结果也会包含很多垃圾信息。所以,我们又有第二种方法。
断言

凡是用print来辅助查看的地方,都可以用断言(assert)来替代:

# err.py
def foo(s):
  n = int(s)
  assert n != 0, 'n is zero!'
  return 10 / n

def main():
  foo('0')

assert的意思是,表达式n != 0应该是True,否则,后面的代码就会出错。

如果断言失败,assert语句本身就会抛出AssertionError:

$ python err.py
Traceback (most recent call last):
 ...
AssertionError: n is zero!

程序中如果到处充斥着assert,和print相比也好不到哪去。不过,启动Python解释器时可以用-O参数来关闭assert:

$ python -O err.py
Traceback (most recent call last):
 ...
ZeroDivisionError: integer division or modulo by zero

关闭后,你可以把所有的assert语句当成pass来看。
logging

把print替换为logging是第3种方式,和assert比,logging不会抛出错误,而且可以输出到文件:

# err.py
import logging

s = '0'
n = int(s)
logging.info('n = %d' % n)
print 10 / n

logging.info()就可以输出一段文本。运行,发现除了ZeroDivisionError,没有任何信息。怎么回事?

别急,在import logging之后添加一行配置再试试:

import logging
logging.basicConfig(level=logging.INFO)

看到输出了:

$ python err.py
INFO:root:n = 0
Traceback (most recent call last):
 File "err.py", line 8, in <module>
  print 10 / n
ZeroDivisionError: integer division or modulo by zero

这就是logging的好处,它允许你指定记录信息的级别,有debug,info,warning,error等几个级别,当我们指定level=INFO时,logging.debug就不起作用了。同理,指定level=WARNING后,debug和info就不起作用了。这样一来,你可以放心地输出不同级别的信息,也不用删除,最后统一控制输出哪个级别的信息。

logging的另一个好处是通过简单的配置,一条语句可以同时输出到不同的地方,比如console和文件。
pdb

第4种方式是启动Python的调试器pdb,让程序以单步方式运行,可以随时查看运行状态。我们先准备好程序:

# err.py
s = '0'
n = int(s)
print 10 / n

然后启动:

$ python -m pdb err.py
> /Users/michael/Github/sicp/err.py(2)<module>()
-> s = '0'

以参数-m pdb启动后,pdb定位到下一步要执行的代码-> s = '0'。输入命令l来查看代码:

(Pdb) l
 1   # err.py
 2 -> s = '0'
 3   n = int(s)
 4   print 10 / n
[EOF]

输入命令n可以单步执行代码:

(Pdb) n
> /Users/michael/Github/sicp/err.py(3)<module>()
-> n = int(s)
(Pdb) n
> /Users/michael/Github/sicp/err.py(4)<module>()
-> print 10 / n

任何时候都可以输入命令p 变量名来查看变量:

(Pdb) p s
'0'
(Pdb) p n
0

输入命令q结束调试,退出程序:

(Pdb) n
ZeroDivisionError: 'integer division or modulo by zero'
> /Users/michael/Github/sicp/err.py(4)<module>()
-> print 10 / n
(Pdb) q

这种通过pdb在命令行调试的方法理论上是万能的,但实在是太麻烦了,如果有一千行代码,要运行到第999行得敲多少命令啊。还好,我们还有另一种调试方法。
pdb.set_trace()

这个方法也是用pdb,但是不需要单步执行,我们只需要import pdb,然后,在可能出错的地方放一个pdb.set_trace(),就可以设置一个断点:

# err.py
import pdb

s = '0'
n = int(s)
pdb.set_trace() # 运行到这里会自动暂停
print 10 / n

运行代码,程序会自动在pdb.set_trace()暂停并进入pdb调试环境,可以用命令p查看变量,或者用命令c继续运行:

$ python err.py 
> /Users/michael/Github/sicp/err.py(7)<module>()
-> print 10 / n
(Pdb) p n
0
(Pdb) c
Traceback (most recent call last):
 File "err.py", line 7, in <module>
  print 10 / n
ZeroDivisionError: integer division or modulo by zero

这个方式比直接启动pdb单步调试效率要高很多,但也高不到哪去。
IDE

如果要比较爽地设置断点、单步执行,就需要一个支持调试功能的IDE。目前比较好的Python IDE有PyCharm:

http://www.jetbrains.com/pycharm/

另外,Eclipse加上pydev插件也可以调试Python程序。
小结

写程序最痛苦的事情莫过于调试,程序往往会以你意想不到的流程来运行,你期待执行的语句其实根本没有执行,这时候,就需要调试了。

虽然用IDE调试起来比较方便,但是最后你会发现,logging才是终极武器。

上一篇:浅析Python中的序列化存储的方法
下一篇:详解在Python和IPython中使用Docker