脚本专栏 
首页 > 脚本专栏 > 浏览文章

fdupe 查找重复文件的Perl脚本代码

(编辑:jimmy 日期: 2024/11/16 浏览:3 次 )
图:

fdupe 查找重复文件的Perl脚本代码

复制代码 代码如下:
#!/usr/bin/perl
#
# fdupe tool - finding duplicate files
#
# $Id: fdupe,v 1.7 2011/10/14 20:11:21 root Exp root $
#
# Source code Copyright (c) 1998,2011 Bernhard Schneider.
# May be used only for non-commercial purposes with
# appropriate acknowledgement of copyright.
#
# FILE :        fdupe
# DESCRIPTION : script finds duplicate Files.
# AUTHOR:       Bernhard Schneider <bernhard@neaptide.org>
# hints, crrections & ideas are welcome
#
# usage: fdupe.pl <path> <path> ...
#        find / -xdev | fdupe.pl
#
# how to select and remove duplicates:
#   redirect output to >file, edit the file and mark lines you
#   wish to move/delete with a preceding dash (-)
#   Use following script to delete marked files:
#   #!/usr/bin/perl -n
#   chomp; unlink if s/^-//;
#
# history:
# 12.05.99 - goto statment replaced with next
# 14.05.99 - minor changes
# 18.05.99 - removed confusing 'for $y'
#            included hash-search
# 20.05.99 - minor changes
# 02.03.00 - some functions rewritten, optimized for speed
# 10.01.01 - hint-fix by Ozzie |ozric at kyuzz.org|
# 05.03.02 - fixed hangups by reading block/char-Devices
# 08.09.11 - skips checking of hard links
# 14.10.11 - accept file names from stdin
#
#use strict; # uncomment for debugging

$|=1;
local (*F1,*F2); my %farray = (); my $statF1;

# ------------------------------
# traverse directories
sub scan ($) {
    my ($dir) = $_[0];
    opendir (DIR, $dir) or die "($dir) $!:$@";
    map {
          (-d) ? scan ($_) : push @{$farray{-s $_}},$_
             unless (-l or -S  or -p or -c or -b);
    } map "$dir/$_", grep !/^\.\.?$/, readdir (DIR); closedir (DIR);
}

# ------------------------------
# get chunk of bytes from a file
sub getchunk ($$) {
  my ($fsize,$pfname) = @_;
  my $chunksize = 32;
  my ($nread,$buff);

  return undef unless open(F1,$$pfname);

  $statF1 = [(stat  F1)[3,1]];
  binmode F1;
  $nread = read (F1,$buff,$chunksize);
  ($nread == $chunksize || $nread == $fsize) ? "$buff" : undef;

# ------------------------------
# compare two files
sub mycmp ($) {
  my ($fptr) = $_[0];
  my ($buffa, $buffb);
  my ($nread1,$nread2);
  my $statF2;
  my ($buffsize) = 16*1024;

  return -1 unless (open(F2,"<$$fptr"));

  $statF2 = [(stat  F2)[3,1]];

  return 0
   if ($statF2->[0] > 1 && $statF1->[1] == $statF2->[1]);

  binmode F2;
  seek (F1,0,0);

  do {  $nread1 = read (F1,$buffa,$buffsize);
     $nread2 = read (F2,$buffb,$buffsize);

     if (($nread1 != $nread2) || ($buffa cmp $buffb)) {
         return -1;
        }
  } while ($nread1);

  return 0;
}

# ------------------------------

print "collecting files and sizes ...\n";

if (-t STDIN) {
 $ARGV[0] = '.' unless $ARGV[0]; # use wd if no arguments given
 map scan $_, @ARGV;
} else { 
 while (<STDIN>)  {
  s癧\r\n]$鞍g;
  push @{$farray{-s $_}},$_
   unless (-l or -S  or -p or -c or -b);
 }
}

print "now comparing ...\n";
for my $fsize (reverse sort {$a <=> $b} keys %farray) {

  my ($i,$fptr,$fref,$pnum,%dupes,%index,$chunk);

  # skip files with unique file size
  next if $#{$farray{$fsize}} == 0;

  $pnum  = 0;
  %dupes = %index = ();

  nx:
  for (my $nx=0;$nx<=$#{$farray{$fsize}};$nx++) # $nx now 1..count of files
  {                                             # with the same size
 $fptr = \$farray{$fsize}[$nx];          # ref to the first file
    $chunk = getchunk $fsize,$fptr;
    if ($pnum) {
   for $i (@{$index{$chunk}}) {
         $fref = ${$dupes{$i}}[0];
      unless (mycmp $fref) {
            # found duplicate, collecting
         push @{$dupes{$i}},$fptr;
   next nx;
      }
   }
    }

    # nothing found, collecting
    push @{$dupes{$pnum}},$fptr;
    push @{$index{$chunk}}, $pnum++;
  }
  # show found dupes for actual size
  for $i (keys %dupes) {
    $#{$dupes{$i}} || next;
    print "\n size: $fsize\n\n";
    for (@{$dupes{$i}}) {
        print $$_,"\n";
    }
  }
}

close F1;
close F2;

上一篇:perl中my和our的区别分析
下一篇:perl批量查询ip归属地的方法代码
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。