脚本专栏 
首页 > 脚本专栏 > 浏览文章

Go语言Mock使用基本指南详解

(编辑:jimmy 日期: 2024/11/9 浏览:3 次 )

当前的实践中问题

在项目之间依赖的时候我们往往可以通过mock一个接口的实现,以一种比较简洁、独立的方式,来进行测试。但是在mock使用的过程中,因为大家的风格不统一,而且很多使用minimal implement的方式来进行mock,这就导致了通过mock出的实现各个函数的返回值往往是静态的,就无法让caller根据返回值进行的一些复杂逻辑。

首先来举一个例子

package task

type Task interface {
 Do(int) (string, error)
}

通过minimal implement的方式来进行手动的mock

package mock

type MinimalTask struct {
 // filed
}

func NewMinimalTask() *MinimalTask {
 return &MinimalTask{}
}

func (mt *MinimalTask) Do(idx int) (string, error) {
 return "", nil
}

在其他包使用Mock出的实现的过程中,就会给测试带来一些问题。

举个例子,假如我们有如下的接口定义与函数定义

package pool

import "github.com/ultramesh/mock-example/task"

type TaskPool interface {
 Run(times int) error
}

type NewTask func() task.Task

我们基于接口定义和接口构造函数定义,封装了一个实现

package pool

import (
 "fmt"
 "github.com/pkg/errors"
 "github.com/ultramesh/mock-example/task"
)

type TaskPoolImpl struct {
 pool []task.Task
}

func NewTaskPoolImpl(newTask NewTask, size int) *TaskPoolImpl {
 tp := &TaskPoolImpl{
  pool: make([]task.Task, size),
 }
 for i := 0; i < size; i++ {
  tp.pool[i] = newTask()
 }
 return tp
}

func (tp *TaskPoolImpl) Run(times int) error {
 poolLen := len(tp.pool)
 for i := 0; i < times; i++ {
  ret, err := tp.pool[i%poolLen].Do(i)
  if err != nil {
   // process error
   return errors.Wrap(err, fmt.Sprintf("error while run task %d", i%poolLen))
  }
  switch ret {
  case "":
   // process 0
   fmt.Println(ret)
  case "a":
   // process 1
   fmt.Println(ret)
  case "b":
   // process 2
   fmt.Println(ret)
  case "c":
   // process 3
   fmt.Println(ret)
  }
 }
 return nil
}

接着我们来写测试的话应该是下面

package pool

import (
 "github.com/golang/mock/gomock"
 "github.com/stretchr/testify/assert"
 "github.com/ultramesh/mock-example/mock"
 "github.com/ultramesh/mock-example/task"
 "testing"
)

type TestSuit struct {
 name string
 newTask NewTask
 size int
 times int
}

func TestTaskPoolRunImpl(t *testing.T) {

 testSuits := []TestSuit{
  {
   nam
  e: "minimal task pool",
   newTask: func() task.Task { return mock.NewMinimalTask() },
   size: 100,
   times: 200,
  },
 }

 for _, suit := range testSuits {
  t.Run(suit.name, func(t *testing.T) {
   var taskPool TaskPool = NewTaskPoolImpl(suit.newTask, suit.size)
   err := taskPool.Run(suit.size)
   assert.NoError(t, err)
  })
 }
}

这样通过go test自带的覆盖率测试我们能看到TaskPoolImpl实际被测试到的路径为

Go语言Mock使用基本指南详解

可以看到的手动实现MinimalTask的问题在于,由于对于caller来说,callee的返回值是不可控的,我们只能覆盖到由MinimalTask所定死的返回值的路径,此外mock在我们的实践中往往由被依赖的项目来操作,他不知道caller怎样根据返回值进行处理,没有办法封装出一个简单、够用的最小实现供接口测试使用,因此我们需要改进我们mock策略,使用golang官方的mock工具——gomock来进行更好地接口测试。

gomock实践

我们使用golang官方的mock工具的优势在于

  • 我们可以基于工具生成的mock代码,我们可以用一种更精简的方式,封装出一个minimal implement,完成和手工实现一个minimal implement一样的效果。
  • 可以允许caller自己灵活地、有选择地控制自己需要用到的那些接口方法的入参以及出参。

还是上面TaskPool的例子,我们现在使用gomock提供的工具来自动生成一个mock Task

mockgen -destination mock/mock_task.go -package mock -source task/interface.go

在mock包中生成一个mock_task.go来实现接口Task

首先基于mock_task.go,我们可以实现一个MockMinimalTask用于最简单的测试

package mock

import "github.com/golang/mock/gomock"

func NewMockMinimalTask(ctrl *gomock.Controller) *MockTask {
 mock := NewMockTask(ctrl)
 mock.EXPECT().Do().Return("", nil).AnyTimes()
 return mock
}

于是这样我们就可以实现一个MockMinimalTask用来做一些测试

package pool

import (
 "github.com/golang/mock/gomock"
 "github.com/stretchr/testify/assert"
 "github.com/ultramesh/mock-example/mock"
 "github.com/ultramesh/mock-example/task"
 "testing"
)

type TestSuit struct {
 name string
 newTask NewTask
 size int
 times int
}

func TestTaskPoolRunImpl(t *testing.T) {

 testSuits := []TestSuit{
  //{
  // name: "minimal task pool",
  // newTask: func() task.Task { return mock.NewMinimalTask() },
  // size: 100,
  // times: 200,
  //},
 {
   name: "mock minimal task pool",
   newTask: func() task.Task { return mock.NewMockMinimalTask(ctrl) },
   size: 100,
   times: 200,
  },
 }

 for _, suit := range testSuits {
  t.Run(suit.name, func(t *testing.T) {
   var taskPool TaskPool = NewTaskPoolImpl(suit.newTask, suit.size)
   err := taskPool.Run(suit.size)
   assert.NoError(t, err)
  })
 }
}

我们使用这个新的测试文件进行覆盖率测试

Go语言Mock使用基本指南详解

可以看到测试结果是一样的,那当我们想要达到更高的测试覆盖率的时候应该怎么办呢?我们进一步修改测试

package pool

import (
 "errors"
 "github.com/golang/mock/gomock"
 "github.com/stretchr/testify/assert"
 "github.com/ultramesh/mock-example/mock"
 "github.com/ultramesh/mock-example/task"
 "testing"
)

type TestSuit struct {
 name string
 newTask NewTask
 size int
 times int
 isErr bool
}

func TestTaskPoolRunImpl_MinimalTask(t *testing.T) {

 ctrl := gomock.NewController(t)
 defer ctrl.Finish()

 testSuits := []TestSuit{
  //{
  // name: "minimal task pool",
  // newTask: func() task.Task { return mock.NewMinimalTask() },
  // size: 100,
  // times: 200,
  //},
  {
   name: "mock minimal task pool",
   newTask: func() task.Task { return mock.NewMockMinimalTask(ctrl) },
   size: 100,
   times: 200,
  },
  {
   name: "return err",
   newTask: func() task.Task {
    mockTask := mock.NewMockTask(ctrl)
  // 加入了返回错误的逻辑
    mockTask.EXPECT().Do(gomock.Any()).Return("", errors.New("return err")).AnyTimes()
    return mockTask
   },
   size: 100,
   times: 200,
   isErr: true,
  },
 }

 for _, suit := range testSuits {
  t.Run(suit.name, func(t *testing.T) {
   var taskPool TaskPool = NewTaskPoolImpl(suit.newTask, suit.size)
   err := taskPool.Run(suit.size)
   if suit.isErr {
    assert.Error(t, err)
   } else {
    assert.NoError(t, err)
   }
  })
 }
}

这样我们就能够覆盖到error的处理逻辑

Go语言Mock使用基本指南详解

甚至我们可以更trick的方式来将所有语句都覆盖到,代码中的testSuits改成下面这样

package pool

import (
 "errors"
 "github.com/golang/mock/gomock"
 "github.com/stretchr/testify/assert"
 "github.com/ultramesh/mock-example/mock"
 "github.com/ultramesh/mock-example/task"
 "testing"
)

type TestSuit struct {
 name string
 newTask NewTask
 size int
 times int
 isErr bool
}

func TestTaskPoolRunImpl_MinimalTask(t *testing.T) {

 ctrl := gomock.NewController(t)
 defer ctrl.Finish()

 strs := []string{"a", "b", "c"}
 count := 0
 size := 3
 rounds := 1

 testSuits := []TestSuit{
  //{
  // name: "minimal task pool",
  // newTask: func() task.Task { return mock.NewMinimalTask() },
  // size: 100,
  // times: 200,
  //},
  {
   name: "mock minimal task pool",
   newTask: func() task.Task { return mock.NewMockMinimalTask(ctrl) },
   size: 100,
   times: 200,
  },
  {
   name: "return err",
   newTask: func() task.Task {
    mockTask := mock.NewMockTask(ctrl)
    mockTask.EXPECT().Do(gomock.Any()).Return("", errors.New("return err")).AnyTimes()
    return mockTask
   },
   size: 100,
   times: 200,
   isErr: true,
  },
  {
   name: "check input and output",
   newTask: func() task.Task {
    mockTask := mock.NewMockTask(ctrl)
  // 这里我们通过Do的设置检查了mackTask.Do调用时候的入参以及调用次数
  // 通过Return来设置发生调用时的返回值
    mockTask.EXPECT().Do(count).Return(strs[count%3], nil).Times(rounds)
    count++
    return mockTask
   },
   size: size,
   times: size * rounds,
   isErr: false,
  },
 }
 var taskPool TaskPool
 for _, suit := range testSuits {
  t.Run(suit.name, func(t *testing.T) {
   taskPool = NewTaskPoolImpl(suit.newTask, suit.size)
   err := taskPool.Run(suit.times)
   if suit.isErr {
    assert.Error(t, err)
   } else {
    assert.NoError(t, err)
   }

  })
 }
}

这样我们就可以覆盖到所有语句

Go语言Mock使用基本指南详解

思考Mock的意义

之前和一些同学讨论过,我们为什么要使用mock这个问题,发现很多同学的觉得写mock的是约定好接口,然后在面向接口做开发的时候能够方便测试,因为不需要接口实际的实现,而是依赖mock的Minimal Implement就可以进行单元测试。我认为这是对的,但是同时也觉得mock的意义不仅仅是如此。

在我看来,面向接口开发的实践中,你应该时刻对接口的输入和输出保持敏感,更进一步的说,在进行单元测试的时候,你需要知道在给定的用例、输入下,你的包会对起使用的接口方法输入什么,调用几次,然后返回值可能是什么,什么样的返回值对你有影响,如果你对这些不了解,那么我觉得或者你应该去做更多地尝试和了解,这样才能尽可能通过mock设计出更多的单测用例,做更多且谨慎的检查,提高测试代码的覆盖率,确保模块功能的完备性。

Go语言Mock使用基本指南详解

Mock与设计模式

mock与单例

客观来讲,借助go语言官方提供的同步原语sync.Once,实现单例、使用单例是很容易的事情。在使用单例实现的过程中,单例的调用者往往逻辑中依赖提供的get方法在需要的时候获取单例,而不会在自身的数据结构中保存单例的句柄,这也就导致我们很难类比前面介绍的case,使用mock进行单元测试,因为caller没有办法控制通过get方法获取的单例。

既然是因为没有办法更改单例返回,那么解决这个问题最简单的方式就是我们就应改提供一个set方法来设置更改单例。假设我们需要基于上面的case实现一个单例的TaskPool。假设我们定义了PoolImpl实现了Pool的接口,在创建单例的时候我们可能是这么做的(为了方便说明,这里我们用最早手工写的基于MinimalTask来写TaskPool的单例)

package pool

import (
 "github.com/ultramesh/mock-example/mock"
 "github.com/ultramesh/mock-example/task"
 "sync"
)

var once sync.Once
var p TaskPool

func GetTaskPool() TaskPool{
 once.Do(func(){
  p = NewTaskPoolImpl(func() task.Task {return mock.NewMinimalTask()},10)
 })
 return p
}

这个时候问题就来了,假设某个依赖于TaskPool的模块中有这么一段逻辑

package runner

import (
 "fmt"
 "github.com/pkg/errors"
 "github.com/ultramesh/mock-example/pool"
)

func Run(times int) error {
 // do something
 fmt.Println("do something")

 // call pool
 p := pool.GetTaskPool()
 err := p.Run(times)
 if err != nil {
  return errors.Wrap(err, "task pool run error")
 }

 // do something
 fmt.Println("do something")
 return nil
}

那么这个Run函数的单测应该怎么写呢?这里的例子还比较简单,要是TaskPool的实现还要依赖一些外部配置文件,实际情形就会更加复杂,当然我们在这里不讨论这个情况,就是举一个简单的例子。在这种情况下,如果单例仅仅只提供了get方法的话是很难进行解耦测试的,如果使用GetTaskPool势必会给测试引入不必要的复杂性,我们还需要提供一个单例的实现者提供一个set方法来解决单元测试解耦的问题。将单例的实现改成下面这样,对外暴露一个单例的set方法,那么我们就可以通过set方法来进行mock。

import (
 "github.com/ultramesh/mock-example/mock"
 "github.com/ultramesh/mock-example/task"
 "sync"
)

var once sync.Once
var p TaskPool

func SetTaskPool(tp TaskPool) {
 p = tp
}

func GetTaskPool() TaskPool {
 once.Do(func(){
  if p != nil {
   p = NewTaskPoolImpl(func() task.Task {return mock.NewMinimalTask()},10)
  }
  
 })
 return p
}

使用mockgen生成一个MockTaskPool实现

mockgen -destination mock/mock_task_pool.go -package mock -source pool/interface.go

类似的,基于前面介绍的思想我们基于自动生成的代码实现一个MockMinimalTaskPool

package mock

import "github.com/golang/mock/gomock"

func NewMockMinimalTaskPool(ctrl *gomock.Controller) *MockTaskPool {
 mock := NewMockTaskPool(ctrl)
 mock.EXPECT().Run(gomock.Any()).Return(nil).AnyTimes()
 return mock
}

基于MockMinimalTaskPool和单例暴露出的set方法,我们就可以将TaskPool实现的逻辑拆除,在单测中只测试自己的代码

package runner

import (
 "github.com/golang/mock/gomock"
 "github.com/stretchr/testify/assert"
 "github.com/ultramesh/mock-example/mock"
 "github.com/ultramesh/mock-example/pool"
 "testing"
)

func TestRun(t *testing.T) {

 ctrl := gomock.NewController(t)
 defer ctrl.Finish()

 p := mock.NewMockMinimalTaskPool(ctrl)

 pool.SetTaskPool(p)

 err := Run(100)
 assert.NoError(t, err)
}
上一篇:从go语言中找&和*区别详解
下一篇:GO语言 复合类型专题
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。