服务器 
首页 > 服务器 > 浏览文章

如何利用多核CPU来加速你的Linux命令(GNU Parallel)

(编辑:jimmy 日期: 2024/11/18 浏览:3 次 )

你是否曾经有过要计算一个非常大的数据(几百GB)的需求?或在里面搜索,或其它操作——一些无法并行的操作。数据专家们,我是在对你们说。你可能有一个4核或更多核的CPU,但我们合适的工具,例如 grep, bzip2, wc, awk, sed 等等,都是单线程的,只能使用一个CPU内核。

借用卡通人物Cartman的话,“如何我能使用这些内核”"htmlcode">

cat bigfile.bin | bzip2 --best > compressedfile.bz2 

现在这样:

cat bigfile.bin | parallel --pipe --recend '' -k bzip2 --best > compressedfile.bz2 

尤其是针对bzip2,GNU parallel在多核CPU上是超级的快。你一不留神,它就执行完成了。

GREP

如果你有一个非常大的文本文件,以前你可能会这样:

grep pattern bigfile.txt 

现在你可以这样:

cat bigfile.txt | parallel --pipe grep 'pattern' 

或者这样:

cat bigfile.txt | parallel --block 10M --pipe grep 'pattern' 

这第二种用法使用了 –block 10M参数,这是说每个内核处理1千万行——你可以用这个参数来调整每个CUP内核处理多少行数据。

AWK

下面是一个用awk命令计算一个非常大的数据文件的例子。

常规用法:

cat rands20M.txt | awk '{s+=$1} END {print s}' 

现在这样:

cat rands20M.txt | parallel --pipe awk \'{s+=\$1} END {print s}\' | awk '{s+=$1} END {print s}' 

这个有点复杂:parallel命令中的–pipe参数将cat输出分成多个块分派给awk调用,形成了很多子计算操作。这些子计算经过第二个管道进入了同一个awk命令,从而输出最终结果。第一个awk有三个反斜杠,这是GNU parallel调用awk的需要。

WC

想要最快的速度计算一个文件的行数吗?

传统做法:

wc -l bigfile.txt 

现在你应该这样:

cat bigfile.txt | parallel --pipe wc -l | awk '{s+=$1} END {print s}' 

非常的巧妙,先使用parallel命令‘mapping'出大量的wc -l调用,形成子计算,最后通过管道发送给awk进行汇总。

SED

想在一个巨大的文件里使用sed命令做大量的替换操作吗?

常规做法:

sed s^old^new^g bigfile.txt 

现在你可以:

cat bigfile.txt | parallel --pipe sed s^old^new^g 

…然后你可以使用管道把输出存储到指定的文件里。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:Linux centos下设置定时备份任务的方法步骤
下一篇:在Docker中利用Tomcat快速部署web应用的方法示例